Metamath Proof Explorer


Theorem elrefrels3

Description: Element of the class of reflexive relations. (Contributed by Peter Mazsa, 23-Jul-2019)

Ref Expression
Assertion elrefrels3 ( 𝑅 ∈ RefRels ↔ ( ∀ 𝑥 ∈ dom 𝑅𝑦 ∈ ran 𝑅 ( 𝑥 = 𝑦𝑥 𝑅 𝑦 ) ∧ 𝑅 ∈ Rels ) )

Proof

Step Hyp Ref Expression
1 dfrefrels3 RefRels = { 𝑟 ∈ Rels ∣ ∀ 𝑥 ∈ dom 𝑟𝑦 ∈ ran 𝑟 ( 𝑥 = 𝑦𝑥 𝑟 𝑦 ) }
2 dmeq ( 𝑟 = 𝑅 → dom 𝑟 = dom 𝑅 )
3 rneq ( 𝑟 = 𝑅 → ran 𝑟 = ran 𝑅 )
4 breq ( 𝑟 = 𝑅 → ( 𝑥 𝑟 𝑦𝑥 𝑅 𝑦 ) )
5 4 imbi2d ( 𝑟 = 𝑅 → ( ( 𝑥 = 𝑦𝑥 𝑟 𝑦 ) ↔ ( 𝑥 = 𝑦𝑥 𝑅 𝑦 ) ) )
6 3 5 raleqbidv ( 𝑟 = 𝑅 → ( ∀ 𝑦 ∈ ran 𝑟 ( 𝑥 = 𝑦𝑥 𝑟 𝑦 ) ↔ ∀ 𝑦 ∈ ran 𝑅 ( 𝑥 = 𝑦𝑥 𝑅 𝑦 ) ) )
7 2 6 raleqbidv ( 𝑟 = 𝑅 → ( ∀ 𝑥 ∈ dom 𝑟𝑦 ∈ ran 𝑟 ( 𝑥 = 𝑦𝑥 𝑟 𝑦 ) ↔ ∀ 𝑥 ∈ dom 𝑅𝑦 ∈ ran 𝑅 ( 𝑥 = 𝑦𝑥 𝑅 𝑦 ) ) )
8 1 7 rabeqel ( 𝑅 ∈ RefRels ↔ ( ∀ 𝑥 ∈ dom 𝑅𝑦 ∈ ran 𝑅 ( 𝑥 = 𝑦𝑥 𝑅 𝑦 ) ∧ 𝑅 ∈ Rels ) )