Metamath Proof Explorer


Theorem elrefrelsrel

Description: For sets, being an element of the class of reflexive relations ( df-refrels ) is equivalent to satisfying the reflexive relation predicate. (Contributed by Peter Mazsa, 25-Jul-2021)

Ref Expression
Assertion elrefrelsrel ( 𝑅𝑉 → ( 𝑅 ∈ RefRels ↔ RefRel 𝑅 ) )

Proof

Step Hyp Ref Expression
1 elrelsrel ( 𝑅𝑉 → ( 𝑅 ∈ Rels ↔ Rel 𝑅 ) )
2 1 anbi2d ( 𝑅𝑉 → ( ( ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ 𝑅𝑅 ∈ Rels ) ↔ ( ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ 𝑅 ∧ Rel 𝑅 ) ) )
3 elrefrels2 ( 𝑅 ∈ RefRels ↔ ( ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ 𝑅𝑅 ∈ Rels ) )
4 dfrefrel2 ( RefRel 𝑅 ↔ ( ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ 𝑅 ∧ Rel 𝑅 ) )
5 2 3 4 3bitr4g ( 𝑅𝑉 → ( 𝑅 ∈ RefRels ↔ RefRel 𝑅 ) )