Description: For sets, being an element of the class of reflexive relations ( df-refrels ) is equivalent to satisfying the reflexive relation predicate. (Contributed by Peter Mazsa, 25-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | elrefrelsrel | ⊢ ( 𝑅 ∈ 𝑉 → ( 𝑅 ∈ RefRels ↔ RefRel 𝑅 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrelsrel | ⊢ ( 𝑅 ∈ 𝑉 → ( 𝑅 ∈ Rels ↔ Rel 𝑅 ) ) | |
2 | 1 | anbi2d | ⊢ ( 𝑅 ∈ 𝑉 → ( ( ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ 𝑅 ∧ 𝑅 ∈ Rels ) ↔ ( ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ 𝑅 ∧ Rel 𝑅 ) ) ) |
3 | elrefrels2 | ⊢ ( 𝑅 ∈ RefRels ↔ ( ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ 𝑅 ∧ 𝑅 ∈ Rels ) ) | |
4 | dfrefrel2 | ⊢ ( RefRel 𝑅 ↔ ( ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ 𝑅 ∧ Rel 𝑅 ) ) | |
5 | 2 3 4 | 3bitr4g | ⊢ ( 𝑅 ∈ 𝑉 → ( 𝑅 ∈ RefRels ↔ RefRel 𝑅 ) ) |