Metamath Proof Explorer


Theorem elrefrelsrel

Description: For sets, being an element of the class of reflexive relations ( df-refrels ) is equivalent to satisfying the reflexive relation predicate. (Contributed by Peter Mazsa, 25-Jul-2021)

Ref Expression
Assertion elrefrelsrel
|- ( R e. V -> ( R e. RefRels <-> RefRel R ) )

Proof

Step Hyp Ref Expression
1 elrelsrel
 |-  ( R e. V -> ( R e. Rels <-> Rel R ) )
2 1 anbi2d
 |-  ( R e. V -> ( ( ( _I i^i ( dom R X. ran R ) ) C_ R /\ R e. Rels ) <-> ( ( _I i^i ( dom R X. ran R ) ) C_ R /\ Rel R ) ) )
3 elrefrels2
 |-  ( R e. RefRels <-> ( ( _I i^i ( dom R X. ran R ) ) C_ R /\ R e. Rels ) )
4 dfrefrel2
 |-  ( RefRel R <-> ( ( _I i^i ( dom R X. ran R ) ) C_ R /\ Rel R ) )
5 2 3 4 3bitr4g
 |-  ( R e. V -> ( R e. RefRels <-> RefRel R ) )