| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfrefrels2 |
⊢ RefRels = { 𝑟 ∈ Rels ∣ ( I ∩ ( dom 𝑟 × ran 𝑟 ) ) ⊆ 𝑟 } |
| 2 |
|
dmeq |
⊢ ( 𝑟 = 𝑅 → dom 𝑟 = dom 𝑅 ) |
| 3 |
|
rneq |
⊢ ( 𝑟 = 𝑅 → ran 𝑟 = ran 𝑅 ) |
| 4 |
2 3
|
xpeq12d |
⊢ ( 𝑟 = 𝑅 → ( dom 𝑟 × ran 𝑟 ) = ( dom 𝑅 × ran 𝑅 ) ) |
| 5 |
4
|
ineq2d |
⊢ ( 𝑟 = 𝑅 → ( I ∩ ( dom 𝑟 × ran 𝑟 ) ) = ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ) |
| 6 |
|
id |
⊢ ( 𝑟 = 𝑅 → 𝑟 = 𝑅 ) |
| 7 |
5 6
|
sseq12d |
⊢ ( 𝑟 = 𝑅 → ( ( I ∩ ( dom 𝑟 × ran 𝑟 ) ) ⊆ 𝑟 ↔ ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ 𝑅 ) ) |
| 8 |
1 7
|
rabeqel |
⊢ ( 𝑅 ∈ RefRels ↔ ( ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ 𝑅 ∧ 𝑅 ∈ Rels ) ) |