Metamath Proof Explorer


Theorem elrefrels2

Description: Element of the class of reflexive relations. (Contributed by Peter Mazsa, 23-Jul-2019)

Ref Expression
Assertion elrefrels2 RRefRelsIdomR×ranRRRRels

Proof

Step Hyp Ref Expression
1 dfrefrels2 RefRels=rRels|Idomr×ranrr
2 dmeq r=Rdomr=domR
3 rneq r=Rranr=ranR
4 2 3 xpeq12d r=Rdomr×ranr=domR×ranR
5 4 ineq2d r=RIdomr×ranr=IdomR×ranR
6 id r=Rr=R
7 5 6 sseq12d r=RIdomr×ranrrIdomR×ranRR
8 1 7 rabeqel RRefRelsIdomR×ranRRRRels