Metamath Proof Explorer


Theorem dfsb3

Description: An alternate definition of proper substitution df-sb that uses only primitive connectives (no defined terms) on the right-hand side. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 6-Mar-2007) (New usage is discouraged.)

Ref Expression
Assertion dfsb3
|- ( [ y / x ] ph <-> ( ( x = y -> -. ph ) -> A. x ( x = y -> ph ) ) )

Proof

Step Hyp Ref Expression
1 df-or
 |-  ( ( ( x = y /\ ph ) \/ A. x ( x = y -> ph ) ) <-> ( -. ( x = y /\ ph ) -> A. x ( x = y -> ph ) ) )
2 dfsb2
 |-  ( [ y / x ] ph <-> ( ( x = y /\ ph ) \/ A. x ( x = y -> ph ) ) )
3 imnan
 |-  ( ( x = y -> -. ph ) <-> -. ( x = y /\ ph ) )
4 3 imbi1i
 |-  ( ( ( x = y -> -. ph ) -> A. x ( x = y -> ph ) ) <-> ( -. ( x = y /\ ph ) -> A. x ( x = y -> ph ) ) )
5 1 2 4 3bitr4i
 |-  ( [ y / x ] ph <-> ( ( x = y -> -. ph ) -> A. x ( x = y -> ph ) ) )