| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							difin | 
							 |-  ( A \ ( A i^i B ) ) = ( A \ B )  | 
						
						
							| 2 | 
							
								
							 | 
							incom | 
							 |-  ( A i^i B ) = ( B i^i A )  | 
						
						
							| 3 | 
							
								2
							 | 
							difeq2i | 
							 |-  ( B \ ( A i^i B ) ) = ( B \ ( B i^i A ) )  | 
						
						
							| 4 | 
							
								
							 | 
							difin | 
							 |-  ( B \ ( B i^i A ) ) = ( B \ A )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							eqtri | 
							 |-  ( B \ ( A i^i B ) ) = ( B \ A )  | 
						
						
							| 6 | 
							
								1 5
							 | 
							uneq12i | 
							 |-  ( ( A \ ( A i^i B ) ) u. ( B \ ( A i^i B ) ) ) = ( ( A \ B ) u. ( B \ A ) )  | 
						
						
							| 7 | 
							
								
							 | 
							difundir | 
							 |-  ( ( A u. B ) \ ( A i^i B ) ) = ( ( A \ ( A i^i B ) ) u. ( B \ ( A i^i B ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							df-symdif | 
							 |-  ( A /_\ B ) = ( ( A \ B ) u. ( B \ A ) )  | 
						
						
							| 9 | 
							
								6 7 8
							 | 
							3eqtr4ri | 
							 |-  ( A /_\ B ) = ( ( A u. B ) \ ( A i^i B ) )  |