Metamath Proof Explorer


Theorem dfsymdif3

Description: Alternate definition of the symmetric difference, given in Example 4.1 of Stoll p. 262 (the original definition corresponds to Stoll p. 13). (Contributed by NM, 17-Aug-2004) (Revised by BJ, 30-Apr-2020)

Ref Expression
Assertion dfsymdif3 AB=ABAB

Proof

Step Hyp Ref Expression
1 difin AAB=AB
2 incom AB=BA
3 2 difeq2i BAB=BBA
4 difin BBA=BA
5 3 4 eqtri BAB=BA
6 1 5 uneq12i AABBAB=ABBA
7 difundir ABAB=AABBAB
8 df-symdif AB=ABBA
9 6 7 8 3eqtr4ri AB=ABAB