Metamath Proof Explorer


Theorem diacnvclN

Description: Closure of partial isomorphism A converse. (Contributed by NM, 6-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses dia1o.h
|- H = ( LHyp ` K )
dia1o.i
|- I = ( ( DIsoA ` K ) ` W )
Assertion diacnvclN
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> ( `' I ` X ) e. dom I )

Proof

Step Hyp Ref Expression
1 dia1o.h
 |-  H = ( LHyp ` K )
2 dia1o.i
 |-  I = ( ( DIsoA ` K ) ` W )
3 1 2 diaf11N
 |-  ( ( K e. HL /\ W e. H ) -> I : dom I -1-1-onto-> ran I )
4 f1ocnvdm
 |-  ( ( I : dom I -1-1-onto-> ran I /\ X e. ran I ) -> ( `' I ` X ) e. dom I )
5 3 4 sylan
 |-  ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> ( `' I ` X ) e. dom I )