Description: Closure of partial isomorphism A converse. (Contributed by NM, 6-Dec-2013) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dia1o.h | |- H = ( LHyp ` K ) |
|
dia1o.i | |- I = ( ( DIsoA ` K ) ` W ) |
||
Assertion | diacnvclN | |- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> ( `' I ` X ) e. dom I ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dia1o.h | |- H = ( LHyp ` K ) |
|
2 | dia1o.i | |- I = ( ( DIsoA ` K ) ` W ) |
|
3 | 1 2 | diaf11N | |- ( ( K e. HL /\ W e. H ) -> I : dom I -1-1-onto-> ran I ) |
4 | f1ocnvdm | |- ( ( I : dom I -1-1-onto-> ran I /\ X e. ran I ) -> ( `' I ` X ) e. dom I ) |
|
5 | 3 4 | sylan | |- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> ( `' I ` X ) e. dom I ) |