Metamath Proof Explorer


Theorem diacnvclN

Description: Closure of partial isomorphism A converse. (Contributed by NM, 6-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses dia1o.h 𝐻 = ( LHyp ‘ 𝐾 )
dia1o.i 𝐼 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 )
Assertion diacnvclN ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( 𝐼𝑋 ) ∈ dom 𝐼 )

Proof

Step Hyp Ref Expression
1 dia1o.h 𝐻 = ( LHyp ‘ 𝐾 )
2 dia1o.i 𝐼 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 )
3 1 2 diaf11N ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 𝐼 : dom 𝐼1-1-onto→ ran 𝐼 )
4 f1ocnvdm ( ( 𝐼 : dom 𝐼1-1-onto→ ran 𝐼𝑋 ∈ ran 𝐼 ) → ( 𝐼𝑋 ) ∈ dom 𝐼 )
5 3 4 sylan ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( 𝐼𝑋 ) ∈ dom 𝐼 )