| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dia1o.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
dia1o.i |
⊢ 𝐼 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 4 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
| 5 |
3 4 1 2
|
diafn |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝐼 Fn { 𝑥 ∈ ( Base ‘ 𝐾 ) ∣ 𝑥 ( le ‘ 𝐾 ) 𝑊 } ) |
| 6 |
|
fnfun |
⊢ ( 𝐼 Fn { 𝑥 ∈ ( Base ‘ 𝐾 ) ∣ 𝑥 ( le ‘ 𝐾 ) 𝑊 } → Fun 𝐼 ) |
| 7 |
|
funfn |
⊢ ( Fun 𝐼 ↔ 𝐼 Fn dom 𝐼 ) |
| 8 |
6 7
|
sylib |
⊢ ( 𝐼 Fn { 𝑥 ∈ ( Base ‘ 𝐾 ) ∣ 𝑥 ( le ‘ 𝐾 ) 𝑊 } → 𝐼 Fn dom 𝐼 ) |
| 9 |
5 8
|
syl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝐼 Fn dom 𝐼 ) |
| 10 |
|
eqidd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ran 𝐼 = ran 𝐼 ) |
| 11 |
3 4 1 2
|
diaeldm |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑥 ∈ dom 𝐼 ↔ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑥 ( le ‘ 𝐾 ) 𝑊 ) ) ) |
| 12 |
3 4 1 2
|
diaeldm |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑦 ∈ dom 𝐼 ↔ ( 𝑦 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ( le ‘ 𝐾 ) 𝑊 ) ) ) |
| 13 |
11 12
|
anbi12d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ( 𝑥 ∈ dom 𝐼 ∧ 𝑦 ∈ dom 𝐼 ) ↔ ( ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑥 ( le ‘ 𝐾 ) 𝑊 ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ( le ‘ 𝐾 ) 𝑊 ) ) ) ) |
| 14 |
3 4 1 2
|
dia11N |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑥 ( le ‘ 𝐾 ) 𝑊 ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ( 𝐼 ‘ 𝑥 ) = ( 𝐼 ‘ 𝑦 ) ↔ 𝑥 = 𝑦 ) ) |
| 15 |
14
|
biimpd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑥 ( le ‘ 𝐾 ) 𝑊 ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ( 𝐼 ‘ 𝑥 ) = ( 𝐼 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 16 |
15
|
3expib |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ( ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑥 ( le ‘ 𝐾 ) 𝑊 ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ( 𝐼 ‘ 𝑥 ) = ( 𝐼 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| 17 |
13 16
|
sylbid |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ( 𝑥 ∈ dom 𝐼 ∧ 𝑦 ∈ dom 𝐼 ) → ( ( 𝐼 ‘ 𝑥 ) = ( 𝐼 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| 18 |
17
|
ralrimivv |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ∀ 𝑥 ∈ dom 𝐼 ∀ 𝑦 ∈ dom 𝐼 ( ( 𝐼 ‘ 𝑥 ) = ( 𝐼 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 19 |
|
dff1o6 |
⊢ ( 𝐼 : dom 𝐼 –1-1-onto→ ran 𝐼 ↔ ( 𝐼 Fn dom 𝐼 ∧ ran 𝐼 = ran 𝐼 ∧ ∀ 𝑥 ∈ dom 𝐼 ∀ 𝑦 ∈ dom 𝐼 ( ( 𝐼 ‘ 𝑥 ) = ( 𝐼 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| 20 |
9 10 18 19
|
syl3anbrc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝐼 : dom 𝐼 –1-1-onto→ ran 𝐼 ) |