Step |
Hyp |
Ref |
Expression |
1 |
|
dia0.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
dia0.z |
⊢ 0 = ( 0. ‘ 𝐾 ) |
3 |
|
dia0.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
4 |
|
dia0.i |
⊢ 𝐼 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
id |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
6 |
|
hlatl |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ AtLat ) |
7 |
1 2
|
atl0cl |
⊢ ( 𝐾 ∈ AtLat → 0 ∈ 𝐵 ) |
8 |
6 7
|
syl |
⊢ ( 𝐾 ∈ HL → 0 ∈ 𝐵 ) |
9 |
8
|
adantr |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 0 ∈ 𝐵 ) |
10 |
1 3
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵 ) |
11 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
12 |
1 11 2
|
atl0le |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑊 ∈ 𝐵 ) → 0 ( le ‘ 𝐾 ) 𝑊 ) |
13 |
6 10 12
|
syl2an |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 0 ( le ‘ 𝐾 ) 𝑊 ) |
14 |
|
eqid |
⊢ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
15 |
|
eqid |
⊢ ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
16 |
1 11 3 14 15 4
|
diaval |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 0 ∈ 𝐵 ∧ 0 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝐼 ‘ 0 ) = { 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∣ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑓 ) ( le ‘ 𝐾 ) 0 } ) |
17 |
5 9 13 16
|
syl12anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝐼 ‘ 0 ) = { 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∣ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑓 ) ( le ‘ 𝐾 ) 0 } ) |
18 |
6
|
ad2antrr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) → 𝐾 ∈ AtLat ) |
19 |
1 3 14 15
|
trlcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑓 ) ∈ 𝐵 ) |
20 |
1 11 2
|
atlle0 |
⊢ ( ( 𝐾 ∈ AtLat ∧ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑓 ) ∈ 𝐵 ) → ( ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑓 ) ( le ‘ 𝐾 ) 0 ↔ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑓 ) = 0 ) ) |
21 |
18 19 20
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑓 ) ( le ‘ 𝐾 ) 0 ↔ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑓 ) = 0 ) ) |
22 |
1 2 3 14 15
|
trlid0b |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) → ( 𝑓 = ( I ↾ 𝐵 ) ↔ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑓 ) = 0 ) ) |
23 |
21 22
|
bitr4d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑓 ) ( le ‘ 𝐾 ) 0 ↔ 𝑓 = ( I ↾ 𝐵 ) ) ) |
24 |
23
|
rabbidva |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → { 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∣ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑓 ) ( le ‘ 𝐾 ) 0 } = { 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∣ 𝑓 = ( I ↾ 𝐵 ) } ) |
25 |
1 3 14
|
idltrn |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( I ↾ 𝐵 ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) |
26 |
|
rabsn |
⊢ ( ( I ↾ 𝐵 ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) → { 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∣ 𝑓 = ( I ↾ 𝐵 ) } = { ( I ↾ 𝐵 ) } ) |
27 |
25 26
|
syl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → { 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∣ 𝑓 = ( I ↾ 𝐵 ) } = { ( I ↾ 𝐵 ) } ) |
28 |
17 24 27
|
3eqtrd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝐼 ‘ 0 ) = { ( I ↾ 𝐵 ) } ) |