Step |
Hyp |
Ref |
Expression |
1 |
|
dia1.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
dia1.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
dia1.i |
⊢ 𝐼 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
id |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
5 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
6 |
5 1
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
7 |
6
|
adantl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
8 |
|
hllat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) |
9 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
10 |
5 9
|
latref |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → 𝑊 ( le ‘ 𝐾 ) 𝑊 ) |
11 |
8 6 10
|
syl2an |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝑊 ( le ‘ 𝐾 ) 𝑊 ) |
12 |
|
eqid |
⊢ ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
13 |
5 9 1 2 12 3
|
diaval |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑊 ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝐼 ‘ 𝑊 ) = { 𝑓 ∈ 𝑇 ∣ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑓 ) ( le ‘ 𝐾 ) 𝑊 } ) |
14 |
4 7 11 13
|
syl12anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝐼 ‘ 𝑊 ) = { 𝑓 ∈ 𝑇 ∣ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑓 ) ( le ‘ 𝐾 ) 𝑊 } ) |
15 |
9 1 2 12
|
trlle |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑓 ∈ 𝑇 ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑓 ) ( le ‘ 𝐾 ) 𝑊 ) |
16 |
15
|
ralrimiva |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ∀ 𝑓 ∈ 𝑇 ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑓 ) ( le ‘ 𝐾 ) 𝑊 ) |
17 |
|
rabid2 |
⊢ ( 𝑇 = { 𝑓 ∈ 𝑇 ∣ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑓 ) ( le ‘ 𝐾 ) 𝑊 } ↔ ∀ 𝑓 ∈ 𝑇 ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑓 ) ( le ‘ 𝐾 ) 𝑊 ) |
18 |
16 17
|
sylibr |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝑇 = { 𝑓 ∈ 𝑇 ∣ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑓 ) ( le ‘ 𝐾 ) 𝑊 } ) |
19 |
14 18
|
eqtr4d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝐼 ‘ 𝑊 ) = 𝑇 ) |