Step |
Hyp |
Ref |
Expression |
1 |
|
dia1.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
dia1.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
dia1.i |
⊢ 𝐼 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
1 2 3
|
dia1N |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝐼 ‘ 𝑊 ) = 𝑇 ) |
5 |
1 3
|
diaf11N |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝐼 : dom 𝐼 –1-1-onto→ ran 𝐼 ) |
6 |
|
f1ofun |
⊢ ( 𝐼 : dom 𝐼 –1-1-onto→ ran 𝐼 → Fun 𝐼 ) |
7 |
5 6
|
syl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → Fun 𝐼 ) |
8 |
1 3
|
dia1eldmN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝑊 ∈ dom 𝐼 ) |
9 |
|
fvelrn |
⊢ ( ( Fun 𝐼 ∧ 𝑊 ∈ dom 𝐼 ) → ( 𝐼 ‘ 𝑊 ) ∈ ran 𝐼 ) |
10 |
7 8 9
|
syl2anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝐼 ‘ 𝑊 ) ∈ ran 𝐼 ) |
11 |
4 10
|
eqeltrrd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝑇 ∈ ran 𝐼 ) |