Metamath Proof Explorer


Theorem dia1elN

Description: The largest subspace in the range of partial isomorphism A. (Contributed by NM, 5-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses dia1.h 𝐻 = ( LHyp ‘ 𝐾 )
dia1.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
dia1.i 𝐼 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 )
Assertion dia1elN ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 𝑇 ∈ ran 𝐼 )

Proof

Step Hyp Ref Expression
1 dia1.h 𝐻 = ( LHyp ‘ 𝐾 )
2 dia1.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
3 dia1.i 𝐼 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 )
4 1 2 3 dia1N ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( 𝐼𝑊 ) = 𝑇 )
5 1 3 diaf11N ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 𝐼 : dom 𝐼1-1-onto→ ran 𝐼 )
6 f1ofun ( 𝐼 : dom 𝐼1-1-onto→ ran 𝐼 → Fun 𝐼 )
7 5 6 syl ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → Fun 𝐼 )
8 1 3 dia1eldmN ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 𝑊 ∈ dom 𝐼 )
9 fvelrn ( ( Fun 𝐼𝑊 ∈ dom 𝐼 ) → ( 𝐼𝑊 ) ∈ ran 𝐼 )
10 7 8 9 syl2anc ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( 𝐼𝑊 ) ∈ ran 𝐼 )
11 4 10 eqeltrrd ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 𝑇 ∈ ran 𝐼 )