Metamath Proof Explorer


Theorem dia1elN

Description: The largest subspace in the range of partial isomorphism A. (Contributed by NM, 5-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses dia1.h
|- H = ( LHyp ` K )
dia1.t
|- T = ( ( LTrn ` K ) ` W )
dia1.i
|- I = ( ( DIsoA ` K ) ` W )
Assertion dia1elN
|- ( ( K e. HL /\ W e. H ) -> T e. ran I )

Proof

Step Hyp Ref Expression
1 dia1.h
 |-  H = ( LHyp ` K )
2 dia1.t
 |-  T = ( ( LTrn ` K ) ` W )
3 dia1.i
 |-  I = ( ( DIsoA ` K ) ` W )
4 1 2 3 dia1N
 |-  ( ( K e. HL /\ W e. H ) -> ( I ` W ) = T )
5 1 3 diaf11N
 |-  ( ( K e. HL /\ W e. H ) -> I : dom I -1-1-onto-> ran I )
6 f1ofun
 |-  ( I : dom I -1-1-onto-> ran I -> Fun I )
7 5 6 syl
 |-  ( ( K e. HL /\ W e. H ) -> Fun I )
8 1 3 dia1eldmN
 |-  ( ( K e. HL /\ W e. H ) -> W e. dom I )
9 fvelrn
 |-  ( ( Fun I /\ W e. dom I ) -> ( I ` W ) e. ran I )
10 7 8 9 syl2anc
 |-  ( ( K e. HL /\ W e. H ) -> ( I ` W ) e. ran I )
11 4 10 eqeltrrd
 |-  ( ( K e. HL /\ W e. H ) -> T e. ran I )