Step |
Hyp |
Ref |
Expression |
1 |
|
dia1.h |
|- H = ( LHyp ` K ) |
2 |
|
dia1.t |
|- T = ( ( LTrn ` K ) ` W ) |
3 |
|
dia1.i |
|- I = ( ( DIsoA ` K ) ` W ) |
4 |
1 2 3
|
dia1N |
|- ( ( K e. HL /\ W e. H ) -> ( I ` W ) = T ) |
5 |
1 3
|
diaf11N |
|- ( ( K e. HL /\ W e. H ) -> I : dom I -1-1-onto-> ran I ) |
6 |
|
f1ofun |
|- ( I : dom I -1-1-onto-> ran I -> Fun I ) |
7 |
5 6
|
syl |
|- ( ( K e. HL /\ W e. H ) -> Fun I ) |
8 |
1 3
|
dia1eldmN |
|- ( ( K e. HL /\ W e. H ) -> W e. dom I ) |
9 |
|
fvelrn |
|- ( ( Fun I /\ W e. dom I ) -> ( I ` W ) e. ran I ) |
10 |
7 8 9
|
syl2anc |
|- ( ( K e. HL /\ W e. H ) -> ( I ` W ) e. ran I ) |
11 |
4 10
|
eqeltrrd |
|- ( ( K e. HL /\ W e. H ) -> T e. ran I ) |