| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dia1.h |
|- H = ( LHyp ` K ) |
| 2 |
|
dia1.t |
|- T = ( ( LTrn ` K ) ` W ) |
| 3 |
|
dia1.i |
|- I = ( ( DIsoA ` K ) ` W ) |
| 4 |
|
id |
|- ( ( K e. HL /\ W e. H ) -> ( K e. HL /\ W e. H ) ) |
| 5 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 6 |
5 1
|
lhpbase |
|- ( W e. H -> W e. ( Base ` K ) ) |
| 7 |
6
|
adantl |
|- ( ( K e. HL /\ W e. H ) -> W e. ( Base ` K ) ) |
| 8 |
|
hllat |
|- ( K e. HL -> K e. Lat ) |
| 9 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
| 10 |
5 9
|
latref |
|- ( ( K e. Lat /\ W e. ( Base ` K ) ) -> W ( le ` K ) W ) |
| 11 |
8 6 10
|
syl2an |
|- ( ( K e. HL /\ W e. H ) -> W ( le ` K ) W ) |
| 12 |
|
eqid |
|- ( ( trL ` K ) ` W ) = ( ( trL ` K ) ` W ) |
| 13 |
5 9 1 2 12 3
|
diaval |
|- ( ( ( K e. HL /\ W e. H ) /\ ( W e. ( Base ` K ) /\ W ( le ` K ) W ) ) -> ( I ` W ) = { f e. T | ( ( ( trL ` K ) ` W ) ` f ) ( le ` K ) W } ) |
| 14 |
4 7 11 13
|
syl12anc |
|- ( ( K e. HL /\ W e. H ) -> ( I ` W ) = { f e. T | ( ( ( trL ` K ) ` W ) ` f ) ( le ` K ) W } ) |
| 15 |
9 1 2 12
|
trlle |
|- ( ( ( K e. HL /\ W e. H ) /\ f e. T ) -> ( ( ( trL ` K ) ` W ) ` f ) ( le ` K ) W ) |
| 16 |
15
|
ralrimiva |
|- ( ( K e. HL /\ W e. H ) -> A. f e. T ( ( ( trL ` K ) ` W ) ` f ) ( le ` K ) W ) |
| 17 |
|
rabid2 |
|- ( T = { f e. T | ( ( ( trL ` K ) ` W ) ` f ) ( le ` K ) W } <-> A. f e. T ( ( ( trL ` K ) ` W ) ` f ) ( le ` K ) W ) |
| 18 |
16 17
|
sylibr |
|- ( ( K e. HL /\ W e. H ) -> T = { f e. T | ( ( ( trL ` K ) ` W ) ` f ) ( le ` K ) W } ) |
| 19 |
14 18
|
eqtr4d |
|- ( ( K e. HL /\ W e. H ) -> ( I ` W ) = T ) |