Metamath Proof Explorer


Theorem dia1N

Description: The value of the partial isomorphism A at the fiducial co-atom is the set of all translations i.e. the entire vector space. (Contributed by NM, 26-Nov-2013) (New usage is discouraged.)

Ref Expression
Hypotheses dia1.h H = LHyp K
dia1.t T = LTrn K W
dia1.i I = DIsoA K W
Assertion dia1N K HL W H I W = T

Proof

Step Hyp Ref Expression
1 dia1.h H = LHyp K
2 dia1.t T = LTrn K W
3 dia1.i I = DIsoA K W
4 id K HL W H K HL W H
5 eqid Base K = Base K
6 5 1 lhpbase W H W Base K
7 6 adantl K HL W H W Base K
8 hllat K HL K Lat
9 eqid K = K
10 5 9 latref K Lat W Base K W K W
11 8 6 10 syl2an K HL W H W K W
12 eqid trL K W = trL K W
13 5 9 1 2 12 3 diaval K HL W H W Base K W K W I W = f T | trL K W f K W
14 4 7 11 13 syl12anc K HL W H I W = f T | trL K W f K W
15 9 1 2 12 trlle K HL W H f T trL K W f K W
16 15 ralrimiva K HL W H f T trL K W f K W
17 rabid2 T = f T | trL K W f K W f T trL K W f K W
18 16 17 sylibr K HL W H T = f T | trL K W f K W
19 14 18 eqtr4d K HL W H I W = T