Metamath Proof Explorer


Theorem dia1elN

Description: The largest subspace in the range of partial isomorphism A. (Contributed by NM, 5-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses dia1.h H = LHyp K
dia1.t T = LTrn K W
dia1.i I = DIsoA K W
Assertion dia1elN K HL W H T ran I

Proof

Step Hyp Ref Expression
1 dia1.h H = LHyp K
2 dia1.t T = LTrn K W
3 dia1.i I = DIsoA K W
4 1 2 3 dia1N K HL W H I W = T
5 1 3 diaf11N K HL W H I : dom I 1-1 onto ran I
6 f1ofun I : dom I 1-1 onto ran I Fun I
7 5 6 syl K HL W H Fun I
8 1 3 dia1eldmN K HL W H W dom I
9 fvelrn Fun I W dom I I W ran I
10 7 8 9 syl2anc K HL W H I W ran I
11 4 10 eqeltrrd K HL W H T ran I