Metamath Proof Explorer


Theorem dia0

Description: The value of the partial isomorphism A at the lattice zero is the singleton of the identity translation i.e. the zero subspace. (Contributed by NM, 26-Nov-2013)

Ref Expression
Hypotheses dia0.b B = Base K
dia0.z 0 ˙ = 0. K
dia0.h H = LHyp K
dia0.i I = DIsoA K W
Assertion dia0 K HL W H I 0 ˙ = I B

Proof

Step Hyp Ref Expression
1 dia0.b B = Base K
2 dia0.z 0 ˙ = 0. K
3 dia0.h H = LHyp K
4 dia0.i I = DIsoA K W
5 id K HL W H K HL W H
6 hlatl K HL K AtLat
7 1 2 atl0cl K AtLat 0 ˙ B
8 6 7 syl K HL 0 ˙ B
9 8 adantr K HL W H 0 ˙ B
10 1 3 lhpbase W H W B
11 eqid K = K
12 1 11 2 atl0le K AtLat W B 0 ˙ K W
13 6 10 12 syl2an K HL W H 0 ˙ K W
14 eqid LTrn K W = LTrn K W
15 eqid trL K W = trL K W
16 1 11 3 14 15 4 diaval K HL W H 0 ˙ B 0 ˙ K W I 0 ˙ = f LTrn K W | trL K W f K 0 ˙
17 5 9 13 16 syl12anc K HL W H I 0 ˙ = f LTrn K W | trL K W f K 0 ˙
18 6 ad2antrr K HL W H f LTrn K W K AtLat
19 1 3 14 15 trlcl K HL W H f LTrn K W trL K W f B
20 1 11 2 atlle0 K AtLat trL K W f B trL K W f K 0 ˙ trL K W f = 0 ˙
21 18 19 20 syl2anc K HL W H f LTrn K W trL K W f K 0 ˙ trL K W f = 0 ˙
22 1 2 3 14 15 trlid0b K HL W H f LTrn K W f = I B trL K W f = 0 ˙
23 21 22 bitr4d K HL W H f LTrn K W trL K W f K 0 ˙ f = I B
24 23 rabbidva K HL W H f LTrn K W | trL K W f K 0 ˙ = f LTrn K W | f = I B
25 1 3 14 idltrn K HL W H I B LTrn K W
26 rabsn I B LTrn K W f LTrn K W | f = I B = I B
27 25 26 syl K HL W H f LTrn K W | f = I B = I B
28 17 24 27 3eqtrd K HL W H I 0 ˙ = I B