Metamath Proof Explorer


Theorem atlle0

Description: An element less than or equal to zero equals zero. ( chle0 analog.) (Contributed by NM, 21-Oct-2011)

Ref Expression
Hypotheses atl0le.b B=BaseK
atl0le.l ˙=K
atl0le.z 0˙=0.K
Assertion atlle0 KAtLatXBX˙0˙X=0˙

Proof

Step Hyp Ref Expression
1 atl0le.b B=BaseK
2 atl0le.l ˙=K
3 atl0le.z 0˙=0.K
4 1 2 3 atl0le KAtLatXB0˙˙X
5 4 biantrud KAtLatXBX˙0˙X˙0˙0˙˙X
6 atlpos KAtLatKPoset
7 6 adantr KAtLatXBKPoset
8 simpr KAtLatXBXB
9 1 3 atl0cl KAtLat0˙B
10 9 adantr KAtLatXB0˙B
11 1 2 posasymb KPosetXB0˙BX˙0˙0˙˙XX=0˙
12 7 8 10 11 syl3anc KAtLatXBX˙0˙0˙˙XX=0˙
13 5 12 bitrd KAtLatXBX˙0˙X=0˙