Description: Domain of the partial isomorphism C. (Contributed by NM, 8-Mar-2014) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dicfn.l | |- .<_ = ( le ` K ) |
|
dicfn.a | |- A = ( Atoms ` K ) |
||
dicfn.h | |- H = ( LHyp ` K ) |
||
dicfn.i | |- I = ( ( DIsoC ` K ) ` W ) |
||
Assertion | dicdmN | |- ( ( K e. V /\ W e. H ) -> dom I = { p e. A | -. p .<_ W } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dicfn.l | |- .<_ = ( le ` K ) |
|
2 | dicfn.a | |- A = ( Atoms ` K ) |
|
3 | dicfn.h | |- H = ( LHyp ` K ) |
|
4 | dicfn.i | |- I = ( ( DIsoC ` K ) ` W ) |
|
5 | 1 2 3 4 | dicfnN | |- ( ( K e. V /\ W e. H ) -> I Fn { p e. A | -. p .<_ W } ) |
6 | 5 | fndmd | |- ( ( K e. V /\ W e. H ) -> dom I = { p e. A | -. p .<_ W } ) |