Metamath Proof Explorer


Theorem dicdmN

Description: Domain of the partial isomorphism C. (Contributed by NM, 8-Mar-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dicfn.l
|- .<_ = ( le ` K )
dicfn.a
|- A = ( Atoms ` K )
dicfn.h
|- H = ( LHyp ` K )
dicfn.i
|- I = ( ( DIsoC ` K ) ` W )
Assertion dicdmN
|- ( ( K e. V /\ W e. H ) -> dom I = { p e. A | -. p .<_ W } )

Proof

Step Hyp Ref Expression
1 dicfn.l
 |-  .<_ = ( le ` K )
2 dicfn.a
 |-  A = ( Atoms ` K )
3 dicfn.h
 |-  H = ( LHyp ` K )
4 dicfn.i
 |-  I = ( ( DIsoC ` K ) ` W )
5 1 2 3 4 dicfnN
 |-  ( ( K e. V /\ W e. H ) -> I Fn { p e. A | -. p .<_ W } )
6 5 fndmd
 |-  ( ( K e. V /\ W e. H ) -> dom I = { p e. A | -. p .<_ W } )