Description: Domain of the partial isomorphism C. (Contributed by NM, 8-Mar-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dicfn.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| dicfn.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| dicfn.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | ||
| dicfn.i | ⊢ 𝐼 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) | ||
| Assertion | dicdmN | ⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) → dom 𝐼 = { 𝑝 ∈ 𝐴 ∣ ¬ 𝑝 ≤ 𝑊 } ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dicfn.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 2 | dicfn.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 3 | dicfn.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | |
| 4 | dicfn.i | ⊢ 𝐼 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) | |
| 5 | 1 2 3 4 | dicfnN | ⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) → 𝐼 Fn { 𝑝 ∈ 𝐴 ∣ ¬ 𝑝 ≤ 𝑊 } ) | 
| 6 | 5 | fndmd | ⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) → dom 𝐼 = { 𝑝 ∈ 𝐴 ∣ ¬ 𝑝 ≤ 𝑊 } ) |