Step |
Hyp |
Ref |
Expression |
1 |
|
dicfn.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
dicfn.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
3 |
|
dicfn.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
4 |
|
dicfn.i |
⊢ 𝐼 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
breq1 |
⊢ ( 𝑝 = 𝑞 → ( 𝑝 ≤ 𝑊 ↔ 𝑞 ≤ 𝑊 ) ) |
6 |
5
|
notbid |
⊢ ( 𝑝 = 𝑞 → ( ¬ 𝑝 ≤ 𝑊 ↔ ¬ 𝑞 ≤ 𝑊 ) ) |
7 |
6
|
elrab |
⊢ ( 𝑞 ∈ { 𝑝 ∈ 𝐴 ∣ ¬ 𝑝 ≤ 𝑊 } ↔ ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊 ) ) |
8 |
|
eqid |
⊢ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) = ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
eqid |
⊢ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
10 |
|
eqid |
⊢ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
11 |
1 2 3 8 9 10 4
|
dicval |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊 ) ) → ( 𝐼 ‘ 𝑞 ) = { 〈 𝑓 , 𝑠 〉 ∣ ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑢 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑢 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑞 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) } ) |
12 |
|
fvex |
⊢ ( 𝐼 ‘ 𝑞 ) ∈ V |
13 |
11 12
|
eqeltrrdi |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊 ) ) → { 〈 𝑓 , 𝑠 〉 ∣ ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑢 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑢 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑞 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) } ∈ V ) |
14 |
7 13
|
sylan2b |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑞 ∈ { 𝑝 ∈ 𝐴 ∣ ¬ 𝑝 ≤ 𝑊 } ) → { 〈 𝑓 , 𝑠 〉 ∣ ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑢 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑢 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑞 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) } ∈ V ) |
15 |
14
|
ralrimiva |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) → ∀ 𝑞 ∈ { 𝑝 ∈ 𝐴 ∣ ¬ 𝑝 ≤ 𝑊 } { 〈 𝑓 , 𝑠 〉 ∣ ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑢 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑢 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑞 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) } ∈ V ) |
16 |
|
eqid |
⊢ ( 𝑞 ∈ { 𝑝 ∈ 𝐴 ∣ ¬ 𝑝 ≤ 𝑊 } ↦ { 〈 𝑓 , 𝑠 〉 ∣ ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑢 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑢 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑞 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) } ) = ( 𝑞 ∈ { 𝑝 ∈ 𝐴 ∣ ¬ 𝑝 ≤ 𝑊 } ↦ { 〈 𝑓 , 𝑠 〉 ∣ ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑢 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑢 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑞 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) } ) |
17 |
16
|
fnmpt |
⊢ ( ∀ 𝑞 ∈ { 𝑝 ∈ 𝐴 ∣ ¬ 𝑝 ≤ 𝑊 } { 〈 𝑓 , 𝑠 〉 ∣ ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑢 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑢 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑞 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) } ∈ V → ( 𝑞 ∈ { 𝑝 ∈ 𝐴 ∣ ¬ 𝑝 ≤ 𝑊 } ↦ { 〈 𝑓 , 𝑠 〉 ∣ ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑢 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑢 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑞 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) } ) Fn { 𝑝 ∈ 𝐴 ∣ ¬ 𝑝 ≤ 𝑊 } ) |
18 |
15 17
|
syl |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) → ( 𝑞 ∈ { 𝑝 ∈ 𝐴 ∣ ¬ 𝑝 ≤ 𝑊 } ↦ { 〈 𝑓 , 𝑠 〉 ∣ ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑢 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑢 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑞 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) } ) Fn { 𝑝 ∈ 𝐴 ∣ ¬ 𝑝 ≤ 𝑊 } ) |
19 |
1 2 3 8 9 10 4
|
dicfval |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) → 𝐼 = ( 𝑞 ∈ { 𝑝 ∈ 𝐴 ∣ ¬ 𝑝 ≤ 𝑊 } ↦ { 〈 𝑓 , 𝑠 〉 ∣ ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑢 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑢 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑞 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) } ) ) |
20 |
19
|
fneq1d |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) → ( 𝐼 Fn { 𝑝 ∈ 𝐴 ∣ ¬ 𝑝 ≤ 𝑊 } ↔ ( 𝑞 ∈ { 𝑝 ∈ 𝐴 ∣ ¬ 𝑝 ≤ 𝑊 } ↦ { 〈 𝑓 , 𝑠 〉 ∣ ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑢 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑢 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑞 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) } ) Fn { 𝑝 ∈ 𝐴 ∣ ¬ 𝑝 ≤ 𝑊 } ) ) |
21 |
18 20
|
mpbird |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) → 𝐼 Fn { 𝑝 ∈ 𝐴 ∣ ¬ 𝑝 ≤ 𝑊 } ) |