| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dicfn.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 2 |  | dicfn.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
						
							| 3 |  | dicfn.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 4 |  | dicfn.i | ⊢ 𝐼  =  ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 5 |  | breq1 | ⊢ ( 𝑝  =  𝑞  →  ( 𝑝  ≤  𝑊  ↔  𝑞  ≤  𝑊 ) ) | 
						
							| 6 | 5 | notbid | ⊢ ( 𝑝  =  𝑞  →  ( ¬  𝑝  ≤  𝑊  ↔  ¬  𝑞  ≤  𝑊 ) ) | 
						
							| 7 | 6 | elrab | ⊢ ( 𝑞  ∈  { 𝑝  ∈  𝐴  ∣  ¬  𝑝  ≤  𝑊 }  ↔  ( 𝑞  ∈  𝐴  ∧  ¬  𝑞  ≤  𝑊 ) ) | 
						
							| 8 |  | eqid | ⊢ ( ( oc ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 9 |  | eqid | ⊢ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 10 |  | eqid | ⊢ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 11 | 1 2 3 8 9 10 4 | dicval | ⊢ ( ( ( 𝐾  ∈  𝑉  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑞  ∈  𝐴  ∧  ¬  𝑞  ≤  𝑊 ) )  →  ( 𝐼 ‘ 𝑞 )  =  { 〈 𝑓 ,  𝑠 〉  ∣  ( 𝑓  =  ( 𝑠 ‘ ( ℩ 𝑢  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑢 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  =  𝑞 ) )  ∧  𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) } ) | 
						
							| 12 |  | fvex | ⊢ ( 𝐼 ‘ 𝑞 )  ∈  V | 
						
							| 13 | 11 12 | eqeltrrdi | ⊢ ( ( ( 𝐾  ∈  𝑉  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑞  ∈  𝐴  ∧  ¬  𝑞  ≤  𝑊 ) )  →  { 〈 𝑓 ,  𝑠 〉  ∣  ( 𝑓  =  ( 𝑠 ‘ ( ℩ 𝑢  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑢 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  =  𝑞 ) )  ∧  𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) }  ∈  V ) | 
						
							| 14 | 7 13 | sylan2b | ⊢ ( ( ( 𝐾  ∈  𝑉  ∧  𝑊  ∈  𝐻 )  ∧  𝑞  ∈  { 𝑝  ∈  𝐴  ∣  ¬  𝑝  ≤  𝑊 } )  →  { 〈 𝑓 ,  𝑠 〉  ∣  ( 𝑓  =  ( 𝑠 ‘ ( ℩ 𝑢  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑢 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  =  𝑞 ) )  ∧  𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) }  ∈  V ) | 
						
							| 15 | 14 | ralrimiva | ⊢ ( ( 𝐾  ∈  𝑉  ∧  𝑊  ∈  𝐻 )  →  ∀ 𝑞  ∈  { 𝑝  ∈  𝐴  ∣  ¬  𝑝  ≤  𝑊 } { 〈 𝑓 ,  𝑠 〉  ∣  ( 𝑓  =  ( 𝑠 ‘ ( ℩ 𝑢  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑢 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  =  𝑞 ) )  ∧  𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) }  ∈  V ) | 
						
							| 16 |  | eqid | ⊢ ( 𝑞  ∈  { 𝑝  ∈  𝐴  ∣  ¬  𝑝  ≤  𝑊 }  ↦  { 〈 𝑓 ,  𝑠 〉  ∣  ( 𝑓  =  ( 𝑠 ‘ ( ℩ 𝑢  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑢 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  =  𝑞 ) )  ∧  𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) } )  =  ( 𝑞  ∈  { 𝑝  ∈  𝐴  ∣  ¬  𝑝  ≤  𝑊 }  ↦  { 〈 𝑓 ,  𝑠 〉  ∣  ( 𝑓  =  ( 𝑠 ‘ ( ℩ 𝑢  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑢 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  =  𝑞 ) )  ∧  𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) } ) | 
						
							| 17 | 16 | fnmpt | ⊢ ( ∀ 𝑞  ∈  { 𝑝  ∈  𝐴  ∣  ¬  𝑝  ≤  𝑊 } { 〈 𝑓 ,  𝑠 〉  ∣  ( 𝑓  =  ( 𝑠 ‘ ( ℩ 𝑢  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑢 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  =  𝑞 ) )  ∧  𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) }  ∈  V  →  ( 𝑞  ∈  { 𝑝  ∈  𝐴  ∣  ¬  𝑝  ≤  𝑊 }  ↦  { 〈 𝑓 ,  𝑠 〉  ∣  ( 𝑓  =  ( 𝑠 ‘ ( ℩ 𝑢  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑢 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  =  𝑞 ) )  ∧  𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) } )  Fn  { 𝑝  ∈  𝐴  ∣  ¬  𝑝  ≤  𝑊 } ) | 
						
							| 18 | 15 17 | syl | ⊢ ( ( 𝐾  ∈  𝑉  ∧  𝑊  ∈  𝐻 )  →  ( 𝑞  ∈  { 𝑝  ∈  𝐴  ∣  ¬  𝑝  ≤  𝑊 }  ↦  { 〈 𝑓 ,  𝑠 〉  ∣  ( 𝑓  =  ( 𝑠 ‘ ( ℩ 𝑢  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑢 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  =  𝑞 ) )  ∧  𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) } )  Fn  { 𝑝  ∈  𝐴  ∣  ¬  𝑝  ≤  𝑊 } ) | 
						
							| 19 | 1 2 3 8 9 10 4 | dicfval | ⊢ ( ( 𝐾  ∈  𝑉  ∧  𝑊  ∈  𝐻 )  →  𝐼  =  ( 𝑞  ∈  { 𝑝  ∈  𝐴  ∣  ¬  𝑝  ≤  𝑊 }  ↦  { 〈 𝑓 ,  𝑠 〉  ∣  ( 𝑓  =  ( 𝑠 ‘ ( ℩ 𝑢  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑢 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  =  𝑞 ) )  ∧  𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) } ) ) | 
						
							| 20 | 19 | fneq1d | ⊢ ( ( 𝐾  ∈  𝑉  ∧  𝑊  ∈  𝐻 )  →  ( 𝐼  Fn  { 𝑝  ∈  𝐴  ∣  ¬  𝑝  ≤  𝑊 }  ↔  ( 𝑞  ∈  { 𝑝  ∈  𝐴  ∣  ¬  𝑝  ≤  𝑊 }  ↦  { 〈 𝑓 ,  𝑠 〉  ∣  ( 𝑓  =  ( 𝑠 ‘ ( ℩ 𝑢  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑢 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  =  𝑞 ) )  ∧  𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) } )  Fn  { 𝑝  ∈  𝐴  ∣  ¬  𝑝  ≤  𝑊 } ) ) | 
						
							| 21 | 18 20 | mpbird | ⊢ ( ( 𝐾  ∈  𝑉  ∧  𝑊  ∈  𝐻 )  →  𝐼  Fn  { 𝑝  ∈  𝐴  ∣  ¬  𝑝  ≤  𝑊 } ) |