Metamath Proof Explorer


Theorem dicfnN

Description: Functionality and domain of the partial isomorphism C. (Contributed by NM, 8-Mar-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dicfn.l = ( le ‘ 𝐾 )
dicfn.a 𝐴 = ( Atoms ‘ 𝐾 )
dicfn.h 𝐻 = ( LHyp ‘ 𝐾 )
dicfn.i 𝐼 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 )
Assertion dicfnN ( ( 𝐾𝑉𝑊𝐻 ) → 𝐼 Fn { 𝑝𝐴 ∣ ¬ 𝑝 𝑊 } )

Proof

Step Hyp Ref Expression
1 dicfn.l = ( le ‘ 𝐾 )
2 dicfn.a 𝐴 = ( Atoms ‘ 𝐾 )
3 dicfn.h 𝐻 = ( LHyp ‘ 𝐾 )
4 dicfn.i 𝐼 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 )
5 breq1 ( 𝑝 = 𝑞 → ( 𝑝 𝑊𝑞 𝑊 ) )
6 5 notbid ( 𝑝 = 𝑞 → ( ¬ 𝑝 𝑊 ↔ ¬ 𝑞 𝑊 ) )
7 6 elrab ( 𝑞 ∈ { 𝑝𝐴 ∣ ¬ 𝑝 𝑊 } ↔ ( 𝑞𝐴 ∧ ¬ 𝑞 𝑊 ) )
8 eqid ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) = ( ( oc ‘ 𝐾 ) ‘ 𝑊 )
9 eqid ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
10 eqid ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
11 1 2 3 8 9 10 4 dicval ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑞𝐴 ∧ ¬ 𝑞 𝑊 ) ) → ( 𝐼𝑞 ) = { ⟨ 𝑓 , 𝑠 ⟩ ∣ ( 𝑓 = ( 𝑠 ‘ ( 𝑢 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑢 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑞 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) } )
12 fvex ( 𝐼𝑞 ) ∈ V
13 11 12 eqeltrrdi ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑞𝐴 ∧ ¬ 𝑞 𝑊 ) ) → { ⟨ 𝑓 , 𝑠 ⟩ ∣ ( 𝑓 = ( 𝑠 ‘ ( 𝑢 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑢 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑞 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) } ∈ V )
14 7 13 sylan2b ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ 𝑞 ∈ { 𝑝𝐴 ∣ ¬ 𝑝 𝑊 } ) → { ⟨ 𝑓 , 𝑠 ⟩ ∣ ( 𝑓 = ( 𝑠 ‘ ( 𝑢 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑢 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑞 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) } ∈ V )
15 14 ralrimiva ( ( 𝐾𝑉𝑊𝐻 ) → ∀ 𝑞 ∈ { 𝑝𝐴 ∣ ¬ 𝑝 𝑊 } { ⟨ 𝑓 , 𝑠 ⟩ ∣ ( 𝑓 = ( 𝑠 ‘ ( 𝑢 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑢 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑞 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) } ∈ V )
16 eqid ( 𝑞 ∈ { 𝑝𝐴 ∣ ¬ 𝑝 𝑊 } ↦ { ⟨ 𝑓 , 𝑠 ⟩ ∣ ( 𝑓 = ( 𝑠 ‘ ( 𝑢 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑢 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑞 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) } ) = ( 𝑞 ∈ { 𝑝𝐴 ∣ ¬ 𝑝 𝑊 } ↦ { ⟨ 𝑓 , 𝑠 ⟩ ∣ ( 𝑓 = ( 𝑠 ‘ ( 𝑢 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑢 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑞 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) } )
17 16 fnmpt ( ∀ 𝑞 ∈ { 𝑝𝐴 ∣ ¬ 𝑝 𝑊 } { ⟨ 𝑓 , 𝑠 ⟩ ∣ ( 𝑓 = ( 𝑠 ‘ ( 𝑢 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑢 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑞 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) } ∈ V → ( 𝑞 ∈ { 𝑝𝐴 ∣ ¬ 𝑝 𝑊 } ↦ { ⟨ 𝑓 , 𝑠 ⟩ ∣ ( 𝑓 = ( 𝑠 ‘ ( 𝑢 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑢 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑞 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) } ) Fn { 𝑝𝐴 ∣ ¬ 𝑝 𝑊 } )
18 15 17 syl ( ( 𝐾𝑉𝑊𝐻 ) → ( 𝑞 ∈ { 𝑝𝐴 ∣ ¬ 𝑝 𝑊 } ↦ { ⟨ 𝑓 , 𝑠 ⟩ ∣ ( 𝑓 = ( 𝑠 ‘ ( 𝑢 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑢 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑞 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) } ) Fn { 𝑝𝐴 ∣ ¬ 𝑝 𝑊 } )
19 1 2 3 8 9 10 4 dicfval ( ( 𝐾𝑉𝑊𝐻 ) → 𝐼 = ( 𝑞 ∈ { 𝑝𝐴 ∣ ¬ 𝑝 𝑊 } ↦ { ⟨ 𝑓 , 𝑠 ⟩ ∣ ( 𝑓 = ( 𝑠 ‘ ( 𝑢 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑢 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑞 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) } ) )
20 19 fneq1d ( ( 𝐾𝑉𝑊𝐻 ) → ( 𝐼 Fn { 𝑝𝐴 ∣ ¬ 𝑝 𝑊 } ↔ ( 𝑞 ∈ { 𝑝𝐴 ∣ ¬ 𝑝 𝑊 } ↦ { ⟨ 𝑓 , 𝑠 ⟩ ∣ ( 𝑓 = ( 𝑠 ‘ ( 𝑢 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑢 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑞 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) } ) Fn { 𝑝𝐴 ∣ ¬ 𝑝 𝑊 } ) )
21 18 20 mpbird ( ( 𝐾𝑉𝑊𝐻 ) → 𝐼 Fn { 𝑝𝐴 ∣ ¬ 𝑝 𝑊 } )