Metamath Proof Explorer


Theorem dicdmN

Description: Domain of the partial isomorphism C. (Contributed by NM, 8-Mar-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dicfn.l ˙ = K
dicfn.a A = Atoms K
dicfn.h H = LHyp K
dicfn.i I = DIsoC K W
Assertion dicdmN K V W H dom I = p A | ¬ p ˙ W

Proof

Step Hyp Ref Expression
1 dicfn.l ˙ = K
2 dicfn.a A = Atoms K
3 dicfn.h H = LHyp K
4 dicfn.i I = DIsoC K W
5 1 2 3 4 dicfnN K V W H I Fn p A | ¬ p ˙ W
6 5 fndmd K V W H dom I = p A | ¬ p ˙ W