Description: Swap second and third argument of double difference. (Contributed by NM, 18-Aug-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | dif32 | |- ( ( A \ B ) \ C ) = ( ( A \ C ) \ B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uncom | |- ( B u. C ) = ( C u. B ) |
|
2 | 1 | difeq2i | |- ( A \ ( B u. C ) ) = ( A \ ( C u. B ) ) |
3 | difun1 | |- ( A \ ( B u. C ) ) = ( ( A \ B ) \ C ) |
|
4 | difun1 | |- ( A \ ( C u. B ) ) = ( ( A \ C ) \ B ) |
|
5 | 2 3 4 | 3eqtr3i | |- ( ( A \ B ) \ C ) = ( ( A \ C ) \ B ) |