Description: Swap second and third argument of double difference. (Contributed by NM, 18-Aug-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dif32 | ⊢ ( ( 𝐴 ∖ 𝐵 ) ∖ 𝐶 ) = ( ( 𝐴 ∖ 𝐶 ) ∖ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uncom | ⊢ ( 𝐵 ∪ 𝐶 ) = ( 𝐶 ∪ 𝐵 ) | |
| 2 | 1 | difeq2i | ⊢ ( 𝐴 ∖ ( 𝐵 ∪ 𝐶 ) ) = ( 𝐴 ∖ ( 𝐶 ∪ 𝐵 ) ) |
| 3 | difun1 | ⊢ ( 𝐴 ∖ ( 𝐵 ∪ 𝐶 ) ) = ( ( 𝐴 ∖ 𝐵 ) ∖ 𝐶 ) | |
| 4 | difun1 | ⊢ ( 𝐴 ∖ ( 𝐶 ∪ 𝐵 ) ) = ( ( 𝐴 ∖ 𝐶 ) ∖ 𝐵 ) | |
| 5 | 2 3 4 | 3eqtr3i | ⊢ ( ( 𝐴 ∖ 𝐵 ) ∖ 𝐶 ) = ( ( 𝐴 ∖ 𝐶 ) ∖ 𝐵 ) |