Metamath Proof Explorer


Theorem difjust

Description: Soundness justification theorem for df-dif . (Contributed by Rodolfo Medina, 27-Apr-2010) (Proof shortened by Andrew Salmon, 9-Jul-2011)

Ref Expression
Assertion difjust
|- { x | ( x e. A /\ -. x e. B ) } = { y | ( y e. A /\ -. y e. B ) }

Proof

Step Hyp Ref Expression
1 eleq1w
 |-  ( x = z -> ( x e. A <-> z e. A ) )
2 eleq1w
 |-  ( x = z -> ( x e. B <-> z e. B ) )
3 2 notbid
 |-  ( x = z -> ( -. x e. B <-> -. z e. B ) )
4 1 3 anbi12d
 |-  ( x = z -> ( ( x e. A /\ -. x e. B ) <-> ( z e. A /\ -. z e. B ) ) )
5 4 cbvabv
 |-  { x | ( x e. A /\ -. x e. B ) } = { z | ( z e. A /\ -. z e. B ) }
6 eleq1w
 |-  ( z = y -> ( z e. A <-> y e. A ) )
7 eleq1w
 |-  ( z = y -> ( z e. B <-> y e. B ) )
8 7 notbid
 |-  ( z = y -> ( -. z e. B <-> -. y e. B ) )
9 6 8 anbi12d
 |-  ( z = y -> ( ( z e. A /\ -. z e. B ) <-> ( y e. A /\ -. y e. B ) ) )
10 9 cbvabv
 |-  { z | ( z e. A /\ -. z e. B ) } = { y | ( y e. A /\ -. y e. B ) }
11 5 10 eqtri
 |-  { x | ( x e. A /\ -. x e. B ) } = { y | ( y e. A /\ -. y e. B ) }