Metamath Proof Explorer


Theorem difjust

Description: Soundness justification theorem for df-dif . (Contributed by Rodolfo Medina, 27-Apr-2010) (Proof shortened by Andrew Salmon, 9-Jul-2011)

Ref Expression
Assertion difjust x | x A ¬ x B = y | y A ¬ y B

Proof

Step Hyp Ref Expression
1 eleq1w x = z x A z A
2 eleq1w x = z x B z B
3 2 notbid x = z ¬ x B ¬ z B
4 1 3 anbi12d x = z x A ¬ x B z A ¬ z B
5 4 cbvabv x | x A ¬ x B = z | z A ¬ z B
6 eleq1w z = y z A y A
7 eleq1w z = y z B y B
8 7 notbid z = y ¬ z B ¬ y B
9 6 8 anbi12d z = y z A ¬ z B y A ¬ y B
10 9 cbvabv z | z A ¬ z B = y | y A ¬ y B
11 5 10 eqtri x | x A ¬ x B = y | y A ¬ y B