Step |
Hyp |
Ref |
Expression |
1 |
|
eleq1w |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) |
2 |
|
eleq1w |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵 ) ) |
3 |
2
|
notbid |
⊢ ( 𝑥 = 𝑧 → ( ¬ 𝑥 ∈ 𝐵 ↔ ¬ 𝑧 ∈ 𝐵 ) ) |
4 |
1 3
|
anbi12d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ↔ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝐵 ) ) ) |
5 |
4
|
cbvabv |
⊢ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) } = { 𝑧 ∣ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝐵 ) } |
6 |
|
eleq1w |
⊢ ( 𝑧 = 𝑦 → ( 𝑧 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) |
7 |
|
eleq1w |
⊢ ( 𝑧 = 𝑦 → ( 𝑧 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵 ) ) |
8 |
7
|
notbid |
⊢ ( 𝑧 = 𝑦 → ( ¬ 𝑧 ∈ 𝐵 ↔ ¬ 𝑦 ∈ 𝐵 ) ) |
9 |
6 8
|
anbi12d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝐵 ) ↔ ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵 ) ) ) |
10 |
9
|
cbvabv |
⊢ { 𝑧 ∣ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝐵 ) } = { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵 ) } |
11 |
5 10
|
eqtri |
⊢ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) } = { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵 ) } |