Metamath Proof Explorer


Theorem difjust

Description: Soundness justification theorem for df-dif . (Contributed by Rodolfo Medina, 27-Apr-2010) (Proof shortened by Andrew Salmon, 9-Jul-2011)

Ref Expression
Assertion difjust { 𝑥 ∣ ( 𝑥𝐴 ∧ ¬ 𝑥𝐵 ) } = { 𝑦 ∣ ( 𝑦𝐴 ∧ ¬ 𝑦𝐵 ) }

Proof

Step Hyp Ref Expression
1 eleq1w ( 𝑥 = 𝑧 → ( 𝑥𝐴𝑧𝐴 ) )
2 eleq1w ( 𝑥 = 𝑧 → ( 𝑥𝐵𝑧𝐵 ) )
3 2 notbid ( 𝑥 = 𝑧 → ( ¬ 𝑥𝐵 ↔ ¬ 𝑧𝐵 ) )
4 1 3 anbi12d ( 𝑥 = 𝑧 → ( ( 𝑥𝐴 ∧ ¬ 𝑥𝐵 ) ↔ ( 𝑧𝐴 ∧ ¬ 𝑧𝐵 ) ) )
5 4 cbvabv { 𝑥 ∣ ( 𝑥𝐴 ∧ ¬ 𝑥𝐵 ) } = { 𝑧 ∣ ( 𝑧𝐴 ∧ ¬ 𝑧𝐵 ) }
6 eleq1w ( 𝑧 = 𝑦 → ( 𝑧𝐴𝑦𝐴 ) )
7 eleq1w ( 𝑧 = 𝑦 → ( 𝑧𝐵𝑦𝐵 ) )
8 7 notbid ( 𝑧 = 𝑦 → ( ¬ 𝑧𝐵 ↔ ¬ 𝑦𝐵 ) )
9 6 8 anbi12d ( 𝑧 = 𝑦 → ( ( 𝑧𝐴 ∧ ¬ 𝑧𝐵 ) ↔ ( 𝑦𝐴 ∧ ¬ 𝑦𝐵 ) ) )
10 9 cbvabv { 𝑧 ∣ ( 𝑧𝐴 ∧ ¬ 𝑧𝐵 ) } = { 𝑦 ∣ ( 𝑦𝐴 ∧ ¬ 𝑦𝐵 ) }
11 5 10 eqtri { 𝑥 ∣ ( 𝑥𝐴 ∧ ¬ 𝑥𝐵 ) } = { 𝑦 ∣ ( 𝑦𝐴 ∧ ¬ 𝑦𝐵 ) }