| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnre |
|- ( B e. NN -> B e. RR ) |
| 2 |
|
nnnn0 |
|- ( K e. NN -> K e. NN0 ) |
| 3 |
|
reexpcl |
|- ( ( B e. RR /\ K e. NN0 ) -> ( B ^ K ) e. RR ) |
| 4 |
1 2 3
|
syl2an |
|- ( ( B e. NN /\ K e. NN ) -> ( B ^ K ) e. RR ) |
| 5 |
|
remulcl |
|- ( ( ( B ^ K ) e. RR /\ A e. RR ) -> ( ( B ^ K ) x. A ) e. RR ) |
| 6 |
4 5
|
stoic3 |
|- ( ( B e. NN /\ K e. NN /\ A e. RR ) -> ( ( B ^ K ) x. A ) e. RR ) |
| 7 |
6
|
3comr |
|- ( ( A e. RR /\ B e. NN /\ K e. NN ) -> ( ( B ^ K ) x. A ) e. RR ) |
| 8 |
|
reflcl |
|- ( ( ( B ^ K ) x. A ) e. RR -> ( |_ ` ( ( B ^ K ) x. A ) ) e. RR ) |
| 9 |
7 8
|
syl |
|- ( ( A e. RR /\ B e. NN /\ K e. NN ) -> ( |_ ` ( ( B ^ K ) x. A ) ) e. RR ) |
| 10 |
|
nnrp |
|- ( B e. NN -> B e. RR+ ) |
| 11 |
10
|
3ad2ant2 |
|- ( ( A e. RR /\ B e. NN /\ K e. NN ) -> B e. RR+ ) |
| 12 |
|
modval |
|- ( ( ( |_ ` ( ( B ^ K ) x. A ) ) e. RR /\ B e. RR+ ) -> ( ( |_ ` ( ( B ^ K ) x. A ) ) mod B ) = ( ( |_ ` ( ( B ^ K ) x. A ) ) - ( B x. ( |_ ` ( ( |_ ` ( ( B ^ K ) x. A ) ) / B ) ) ) ) ) |
| 13 |
9 11 12
|
syl2anc |
|- ( ( A e. RR /\ B e. NN /\ K e. NN ) -> ( ( |_ ` ( ( B ^ K ) x. A ) ) mod B ) = ( ( |_ ` ( ( B ^ K ) x. A ) ) - ( B x. ( |_ ` ( ( |_ ` ( ( B ^ K ) x. A ) ) / B ) ) ) ) ) |
| 14 |
|
simp2 |
|- ( ( A e. RR /\ B e. NN /\ K e. NN ) -> B e. NN ) |
| 15 |
|
fldiv |
|- ( ( ( ( B ^ K ) x. A ) e. RR /\ B e. NN ) -> ( |_ ` ( ( |_ ` ( ( B ^ K ) x. A ) ) / B ) ) = ( |_ ` ( ( ( B ^ K ) x. A ) / B ) ) ) |
| 16 |
7 14 15
|
syl2anc |
|- ( ( A e. RR /\ B e. NN /\ K e. NN ) -> ( |_ ` ( ( |_ ` ( ( B ^ K ) x. A ) ) / B ) ) = ( |_ ` ( ( ( B ^ K ) x. A ) / B ) ) ) |
| 17 |
|
nncn |
|- ( B e. NN -> B e. CC ) |
| 18 |
|
expcl |
|- ( ( B e. CC /\ K e. NN0 ) -> ( B ^ K ) e. CC ) |
| 19 |
17 2 18
|
syl2an |
|- ( ( B e. NN /\ K e. NN ) -> ( B ^ K ) e. CC ) |
| 20 |
19
|
3adant1 |
|- ( ( A e. RR /\ B e. NN /\ K e. NN ) -> ( B ^ K ) e. CC ) |
| 21 |
|
recn |
|- ( A e. RR -> A e. CC ) |
| 22 |
21
|
3ad2ant1 |
|- ( ( A e. RR /\ B e. NN /\ K e. NN ) -> A e. CC ) |
| 23 |
|
nnne0 |
|- ( B e. NN -> B =/= 0 ) |
| 24 |
17 23
|
jca |
|- ( B e. NN -> ( B e. CC /\ B =/= 0 ) ) |
| 25 |
24
|
3ad2ant2 |
|- ( ( A e. RR /\ B e. NN /\ K e. NN ) -> ( B e. CC /\ B =/= 0 ) ) |
| 26 |
|
div23 |
|- ( ( ( B ^ K ) e. CC /\ A e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( ( B ^ K ) x. A ) / B ) = ( ( ( B ^ K ) / B ) x. A ) ) |
| 27 |
20 22 25 26
|
syl3anc |
|- ( ( A e. RR /\ B e. NN /\ K e. NN ) -> ( ( ( B ^ K ) x. A ) / B ) = ( ( ( B ^ K ) / B ) x. A ) ) |
| 28 |
|
nnz |
|- ( K e. NN -> K e. ZZ ) |
| 29 |
|
expm1 |
|- ( ( B e. CC /\ B =/= 0 /\ K e. ZZ ) -> ( B ^ ( K - 1 ) ) = ( ( B ^ K ) / B ) ) |
| 30 |
17 23 28 29
|
syl2an3an |
|- ( ( B e. NN /\ K e. NN ) -> ( B ^ ( K - 1 ) ) = ( ( B ^ K ) / B ) ) |
| 31 |
30
|
3adant1 |
|- ( ( A e. RR /\ B e. NN /\ K e. NN ) -> ( B ^ ( K - 1 ) ) = ( ( B ^ K ) / B ) ) |
| 32 |
31
|
oveq1d |
|- ( ( A e. RR /\ B e. NN /\ K e. NN ) -> ( ( B ^ ( K - 1 ) ) x. A ) = ( ( ( B ^ K ) / B ) x. A ) ) |
| 33 |
27 32
|
eqtr4d |
|- ( ( A e. RR /\ B e. NN /\ K e. NN ) -> ( ( ( B ^ K ) x. A ) / B ) = ( ( B ^ ( K - 1 ) ) x. A ) ) |
| 34 |
33
|
fveq2d |
|- ( ( A e. RR /\ B e. NN /\ K e. NN ) -> ( |_ ` ( ( ( B ^ K ) x. A ) / B ) ) = ( |_ ` ( ( B ^ ( K - 1 ) ) x. A ) ) ) |
| 35 |
16 34
|
eqtrd |
|- ( ( A e. RR /\ B e. NN /\ K e. NN ) -> ( |_ ` ( ( |_ ` ( ( B ^ K ) x. A ) ) / B ) ) = ( |_ ` ( ( B ^ ( K - 1 ) ) x. A ) ) ) |
| 36 |
35
|
oveq2d |
|- ( ( A e. RR /\ B e. NN /\ K e. NN ) -> ( B x. ( |_ ` ( ( |_ ` ( ( B ^ K ) x. A ) ) / B ) ) ) = ( B x. ( |_ ` ( ( B ^ ( K - 1 ) ) x. A ) ) ) ) |
| 37 |
36
|
oveq2d |
|- ( ( A e. RR /\ B e. NN /\ K e. NN ) -> ( ( |_ ` ( ( B ^ K ) x. A ) ) - ( B x. ( |_ ` ( ( |_ ` ( ( B ^ K ) x. A ) ) / B ) ) ) ) = ( ( |_ ` ( ( B ^ K ) x. A ) ) - ( B x. ( |_ ` ( ( B ^ ( K - 1 ) ) x. A ) ) ) ) ) |
| 38 |
13 37
|
eqtrd |
|- ( ( A e. RR /\ B e. NN /\ K e. NN ) -> ( ( |_ ` ( ( B ^ K ) x. A ) ) mod B ) = ( ( |_ ` ( ( B ^ K ) x. A ) ) - ( B x. ( |_ ` ( ( B ^ ( K - 1 ) ) x. A ) ) ) ) ) |