Metamath Proof Explorer


Theorem disjALTVinidres

Description: The intersection with restricted identity relation is disjoint. (Contributed by Peter Mazsa, 31-Dec-2021)

Ref Expression
Assertion disjALTVinidres
|- Disj ( R i^i ( _I |` A ) )

Proof

Step Hyp Ref Expression
1 disjALTVid
 |-  Disj _I
2 disjiminres
 |-  ( Disj _I -> Disj ( R i^i ( _I |` A ) ) )
3 1 2 ax-mp
 |-  Disj ( R i^i ( _I |` A ) )