Metamath Proof Explorer


Theorem disjALTVinidres

Description: The intersection with restricted identity relation is disjoint. (Contributed by Peter Mazsa, 31-Dec-2021)

Ref Expression
Assertion disjALTVinidres Disj ( 𝑅 ∩ ( I ↾ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 disjALTVid Disj I
2 disjiminres ( Disj I → Disj ( 𝑅 ∩ ( I ↾ 𝐴 ) ) )
3 1 2 ax-mp Disj ( 𝑅 ∩ ( I ↾ 𝐴 ) )