Metamath Proof Explorer


Theorem disjabso

Description: Disjointness is absolute for transitive models. Compare Example I.16.3 of Kunen2 p. 96 and the following discussion. (Contributed by Eric Schmidt, 19-Oct-2025)

Ref Expression
Assertion disjabso
|- ( ( Tr M /\ A e. M ) -> ( ( A i^i B ) = (/) <-> A. x e. M ( x e. A -> -. x e. B ) ) )

Proof

Step Hyp Ref Expression
1 disj
 |-  ( ( A i^i B ) = (/) <-> A. x e. A -. x e. B )
2 ralabso
 |-  ( ( Tr M /\ A e. M ) -> ( A. x e. A -. x e. B <-> A. x e. M ( x e. A -> -. x e. B ) ) )
3 1 2 bitrid
 |-  ( ( Tr M /\ A e. M ) -> ( ( A i^i B ) = (/) <-> A. x e. M ( x e. A -> -. x e. B ) ) )