Metamath Proof Explorer


Theorem n0abso

Description: Nonemptiness is absolute for transitive models. Compare Example I.16.3 of Kunen2 p. 96 and the following discussion. (Contributed by Eric Schmidt, 19-Oct-2025)

Ref Expression
Assertion n0abso
|- ( ( Tr M /\ A e. M ) -> ( A =/= (/) <-> E. x e. M x e. A ) )

Proof

Step Hyp Ref Expression
1 rexabso
 |-  ( ( Tr M /\ A e. M ) -> ( E. x e. A T. <-> E. x e. M ( x e. A /\ T. ) ) )
2 tru
 |-  T.
3 2 rext0
 |-  ( E. x e. A T. <-> A =/= (/) )
4 3 bicomi
 |-  ( A =/= (/) <-> E. x e. A T. )
5 2 biantru
 |-  ( x e. A <-> ( x e. A /\ T. ) )
6 5 rexbii
 |-  ( E. x e. M x e. A <-> E. x e. M ( x e. A /\ T. ) )
7 1 4 6 3bitr4g
 |-  ( ( Tr M /\ A e. M ) -> ( A =/= (/) <-> E. x e. M x e. A ) )