Description: Nonemptiness is absolute for transitive models. Compare Example I.16.3 of Kunen2 p. 96 and the following discussion. (Contributed by Eric Schmidt, 19-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | n0abso | ⊢ ( ( Tr 𝑀 ∧ 𝐴 ∈ 𝑀 ) → ( 𝐴 ≠ ∅ ↔ ∃ 𝑥 ∈ 𝑀 𝑥 ∈ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexabso | ⊢ ( ( Tr 𝑀 ∧ 𝐴 ∈ 𝑀 ) → ( ∃ 𝑥 ∈ 𝐴 ⊤ ↔ ∃ 𝑥 ∈ 𝑀 ( 𝑥 ∈ 𝐴 ∧ ⊤ ) ) ) | |
| 2 | tru | ⊢ ⊤ | |
| 3 | 2 | rext0 | ⊢ ( ∃ 𝑥 ∈ 𝐴 ⊤ ↔ 𝐴 ≠ ∅ ) |
| 4 | 3 | bicomi | ⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑥 ∈ 𝐴 ⊤ ) |
| 5 | 2 | biantru | ⊢ ( 𝑥 ∈ 𝐴 ↔ ( 𝑥 ∈ 𝐴 ∧ ⊤ ) ) |
| 6 | 5 | rexbii | ⊢ ( ∃ 𝑥 ∈ 𝑀 𝑥 ∈ 𝐴 ↔ ∃ 𝑥 ∈ 𝑀 ( 𝑥 ∈ 𝐴 ∧ ⊤ ) ) |
| 7 | 1 4 6 | 3bitr4g | ⊢ ( ( Tr 𝑀 ∧ 𝐴 ∈ 𝑀 ) → ( 𝐴 ≠ ∅ ↔ ∃ 𝑥 ∈ 𝑀 𝑥 ∈ 𝐴 ) ) |