Metamath Proof Explorer


Theorem n0abso

Description: Nonemptiness is absolute for transitive models. Compare Example I.16.3 of Kunen2 p. 96 and the following discussion. (Contributed by Eric Schmidt, 19-Oct-2025)

Ref Expression
Assertion n0abso ( ( Tr 𝑀𝐴𝑀 ) → ( 𝐴 ≠ ∅ ↔ ∃ 𝑥𝑀 𝑥𝐴 ) )

Proof

Step Hyp Ref Expression
1 rexabso ( ( Tr 𝑀𝐴𝑀 ) → ( ∃ 𝑥𝐴 ⊤ ↔ ∃ 𝑥𝑀 ( 𝑥𝐴 ∧ ⊤ ) ) )
2 tru
3 2 rext0 ( ∃ 𝑥𝐴 ⊤ ↔ 𝐴 ≠ ∅ )
4 3 bicomi ( 𝐴 ≠ ∅ ↔ ∃ 𝑥𝐴 ⊤ )
5 2 biantru ( 𝑥𝐴 ↔ ( 𝑥𝐴 ∧ ⊤ ) )
6 5 rexbii ( ∃ 𝑥𝑀 𝑥𝐴 ↔ ∃ 𝑥𝑀 ( 𝑥𝐴 ∧ ⊤ ) )
7 1 4 6 3bitr4g ( ( Tr 𝑀𝐴𝑀 ) → ( 𝐴 ≠ ∅ ↔ ∃ 𝑥𝑀 𝑥𝐴 ) )