Metamath Proof Explorer
Description: Nonempty existential quantification of a theorem is true. (Contributed by Eric Schmidt, 19-Oct-2025)
|
|
Ref |
Expression |
|
Hypothesis |
rext0.1 |
⊢ 𝜑 |
|
Assertion |
rext0 |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ 𝐴 ≠ ∅ ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rext0.1 |
⊢ 𝜑 |
| 2 |
1
|
notnoti |
⊢ ¬ ¬ 𝜑 |
| 3 |
2
|
ralf0 |
⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝜑 ↔ 𝐴 = ∅ ) |
| 4 |
3
|
notbii |
⊢ ( ¬ ∀ 𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ 𝐴 = ∅ ) |
| 5 |
|
dfrex2 |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀ 𝑥 ∈ 𝐴 ¬ 𝜑 ) |
| 6 |
|
df-ne |
⊢ ( 𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅ ) |
| 7 |
4 5 6
|
3bitr4i |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ 𝐴 ≠ ∅ ) |