Metamath Proof Explorer


Theorem rext0

Description: Nonempty existential quantification of a theorem is true. (Contributed by Eric Schmidt, 19-Oct-2025)

Ref Expression
Hypothesis rext0.1 𝜑
Assertion rext0 ( ∃ 𝑥𝐴 𝜑𝐴 ≠ ∅ )

Proof

Step Hyp Ref Expression
1 rext0.1 𝜑
2 1 notnoti ¬ ¬ 𝜑
3 2 ralf0 ( ∀ 𝑥𝐴 ¬ 𝜑𝐴 = ∅ )
4 3 notbii ( ¬ ∀ 𝑥𝐴 ¬ 𝜑 ↔ ¬ 𝐴 = ∅ )
5 dfrex2 ( ∃ 𝑥𝐴 𝜑 ↔ ¬ ∀ 𝑥𝐴 ¬ 𝜑 )
6 df-ne ( 𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅ )
7 4 5 6 3bitr4i ( ∃ 𝑥𝐴 𝜑𝐴 ≠ ∅ )