Metamath Proof Explorer


Theorem rext0

Description: Nonempty existential quantification of a theorem is true. (Contributed by Eric Schmidt, 19-Oct-2025)

Ref Expression
Hypothesis rext0.1 φ
Assertion rext0 x A φ A

Proof

Step Hyp Ref Expression
1 rext0.1 φ
2 1 notnoti ¬ ¬ φ
3 2 ralf0 x A ¬ φ A =
4 3 notbii ¬ x A ¬ φ ¬ A =
5 dfrex2 x A φ ¬ x A ¬ φ
6 df-ne A ¬ A =
7 4 5 6 3bitr4i x A φ A