Description: Nonempty existential quantification of a theorem is true. (Contributed by Eric Schmidt, 19-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rext0.1 | |- ph |
|
| Assertion | rext0 | |- ( E. x e. A ph <-> A =/= (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rext0.1 | |- ph |
|
| 2 | 1 | notnoti | |- -. -. ph |
| 3 | 2 | ralf0 | |- ( A. x e. A -. ph <-> A = (/) ) |
| 4 | 3 | notbii | |- ( -. A. x e. A -. ph <-> -. A = (/) ) |
| 5 | dfrex2 | |- ( E. x e. A ph <-> -. A. x e. A -. ph ) |
|
| 6 | df-ne | |- ( A =/= (/) <-> -. A = (/) ) |
|
| 7 | 4 5 6 | 3bitr4i | |- ( E. x e. A ph <-> A =/= (/) ) |