| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ralf0.1 | ⊢ ¬  𝜑 | 
						
							| 2 |  | r19.26 | ⊢ ( ∀ 𝑥  ∈  𝐴 ( ¬  𝜑  ∧  𝜑 )  ↔  ( ∀ 𝑥  ∈  𝐴 ¬  𝜑  ∧  ∀ 𝑥  ∈  𝐴 𝜑 ) ) | 
						
							| 3 |  | pm2.24 | ⊢ ( 𝜑  →  ( ¬  𝜑  →  ⊥ ) ) | 
						
							| 4 | 3 | impcom | ⊢ ( ( ¬  𝜑  ∧  𝜑 )  →  ⊥ ) | 
						
							| 5 | 4 | ralimi | ⊢ ( ∀ 𝑥  ∈  𝐴 ( ¬  𝜑  ∧  𝜑 )  →  ∀ 𝑥  ∈  𝐴 ⊥ ) | 
						
							| 6 |  | df-ral | ⊢ ( ∀ 𝑥  ∈  𝐴 ⊥  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  ⊥ ) ) | 
						
							| 7 |  | dfnot | ⊢ ( ¬  𝑥  ∈  𝐴  ↔  ( 𝑥  ∈  𝐴  →  ⊥ ) ) | 
						
							| 8 | 7 | bicomi | ⊢ ( ( 𝑥  ∈  𝐴  →  ⊥ )  ↔  ¬  𝑥  ∈  𝐴 ) | 
						
							| 9 | 8 | albii | ⊢ ( ∀ 𝑥 ( 𝑥  ∈  𝐴  →  ⊥ )  ↔  ∀ 𝑥 ¬  𝑥  ∈  𝐴 ) | 
						
							| 10 | 6 9 | sylbb | ⊢ ( ∀ 𝑥  ∈  𝐴 ⊥  →  ∀ 𝑥 ¬  𝑥  ∈  𝐴 ) | 
						
							| 11 |  | id | ⊢ ( 𝑥  ∈  𝐴  →  𝑥  ∈  𝐴 ) | 
						
							| 12 |  | falim | ⊢ ( ⊥  →  𝑥  ∈  𝐴 ) | 
						
							| 13 | 11 12 | pm5.21ni | ⊢ ( ¬  𝑥  ∈  𝐴  →  ( 𝑥  ∈  𝐴  ↔  ⊥ ) ) | 
						
							| 14 |  | df-clab | ⊢ ( 𝑥  ∈  { 𝑦  ∣  ⊥ }  ↔  [ 𝑥  /  𝑦 ] ⊥ ) | 
						
							| 15 |  | sbv | ⊢ ( [ 𝑥  /  𝑦 ] ⊥  ↔  ⊥ ) | 
						
							| 16 | 14 15 | bitri | ⊢ ( 𝑥  ∈  { 𝑦  ∣  ⊥ }  ↔  ⊥ ) | 
						
							| 17 | 13 16 | bitr4di | ⊢ ( ¬  𝑥  ∈  𝐴  →  ( 𝑥  ∈  𝐴  ↔  𝑥  ∈  { 𝑦  ∣  ⊥ } ) ) | 
						
							| 18 | 17 | alimi | ⊢ ( ∀ 𝑥 ¬  𝑥  ∈  𝐴  →  ∀ 𝑥 ( 𝑥  ∈  𝐴  ↔  𝑥  ∈  { 𝑦  ∣  ⊥ } ) ) | 
						
							| 19 |  | dfcleq | ⊢ ( 𝐴  =  { 𝑦  ∣  ⊥ }  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐴  ↔  𝑥  ∈  { 𝑦  ∣  ⊥ } ) ) | 
						
							| 20 | 18 19 | sylibr | ⊢ ( ∀ 𝑥 ¬  𝑥  ∈  𝐴  →  𝐴  =  { 𝑦  ∣  ⊥ } ) | 
						
							| 21 |  | dfnul4 | ⊢ ∅  =  { 𝑦  ∣  ⊥ } | 
						
							| 22 | 20 21 | eqtr4di | ⊢ ( ∀ 𝑥 ¬  𝑥  ∈  𝐴  →  𝐴  =  ∅ ) | 
						
							| 23 | 5 10 22 | 3syl | ⊢ ( ∀ 𝑥  ∈  𝐴 ( ¬  𝜑  ∧  𝜑 )  →  𝐴  =  ∅ ) | 
						
							| 24 | 2 23 | sylbir | ⊢ ( ( ∀ 𝑥  ∈  𝐴 ¬  𝜑  ∧  ∀ 𝑥  ∈  𝐴 𝜑 )  →  𝐴  =  ∅ ) | 
						
							| 25 | 24 | ex | ⊢ ( ∀ 𝑥  ∈  𝐴 ¬  𝜑  →  ( ∀ 𝑥  ∈  𝐴 𝜑  →  𝐴  =  ∅ ) ) | 
						
							| 26 | 1 | a1i | ⊢ ( 𝑥  ∈  𝐴  →  ¬  𝜑 ) | 
						
							| 27 | 25 26 | mprg | ⊢ ( ∀ 𝑥  ∈  𝐴 𝜑  →  𝐴  =  ∅ ) | 
						
							| 28 |  | rzal | ⊢ ( 𝐴  =  ∅  →  ∀ 𝑥  ∈  𝐴 𝜑 ) | 
						
							| 29 | 27 28 | impbii | ⊢ ( ∀ 𝑥  ∈  𝐴 𝜑  ↔  𝐴  =  ∅ ) |