Metamath Proof Explorer


Theorem n0abso

Description: Nonemptiness is absolute for transitive models. Compare Example I.16.3 of Kunen2 p. 96 and the following discussion. (Contributed by Eric Schmidt, 19-Oct-2025)

Ref Expression
Assertion n0abso Tr M A M A x M x A

Proof

Step Hyp Ref Expression
1 rexabso Tr M A M x A x M x A
2 tru
3 2 rext0 x A A
4 3 bicomi A x A
5 2 biantru x A x A
6 5 rexbii x M x A x M x A
7 1 4 6 3bitr4g Tr M A M A x M x A