Metamath Proof Explorer


Theorem disjdifb

Description: Relative complement is anticommutative regarding intersection. (Contributed by Zhi Wang, 5-Sep-2024)

Ref Expression
Assertion disjdifb
|- ( ( A \ B ) i^i ( B \ A ) ) = (/)

Proof

Step Hyp Ref Expression
1 indif1
 |-  ( ( A \ B ) i^i ( B \ A ) ) = ( ( A i^i ( B \ A ) ) \ B )
2 disjdif
 |-  ( A i^i ( B \ A ) ) = (/)
3 2 difeq1i
 |-  ( ( A i^i ( B \ A ) ) \ B ) = ( (/) \ B )
4 0dif
 |-  ( (/) \ B ) = (/)
5 1 3 4 3eqtri
 |-  ( ( A \ B ) i^i ( B \ A ) ) = (/)