Description: Relative complement is anticommutative regarding intersection. (Contributed by Zhi Wang, 5-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | disjdifb | |- ( ( A \ B ) i^i ( B \ A ) ) = (/) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indif1 | |- ( ( A \ B ) i^i ( B \ A ) ) = ( ( A i^i ( B \ A ) ) \ B ) |
|
2 | disjdif | |- ( A i^i ( B \ A ) ) = (/) |
|
3 | 2 | difeq1i | |- ( ( A i^i ( B \ A ) ) \ B ) = ( (/) \ B ) |
4 | 0dif | |- ( (/) \ B ) = (/) |
|
5 | 1 3 4 | 3eqtri | |- ( ( A \ B ) i^i ( B \ A ) ) = (/) |