Description: Relative complement is anticommutative regarding intersection. (Contributed by Zhi Wang, 5-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | disjdifb | ⊢ ( ( 𝐴 ∖ 𝐵 ) ∩ ( 𝐵 ∖ 𝐴 ) ) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indif1 | ⊢ ( ( 𝐴 ∖ 𝐵 ) ∩ ( 𝐵 ∖ 𝐴 ) ) = ( ( 𝐴 ∩ ( 𝐵 ∖ 𝐴 ) ) ∖ 𝐵 ) | |
2 | disjdif | ⊢ ( 𝐴 ∩ ( 𝐵 ∖ 𝐴 ) ) = ∅ | |
3 | 2 | difeq1i | ⊢ ( ( 𝐴 ∩ ( 𝐵 ∖ 𝐴 ) ) ∖ 𝐵 ) = ( ∅ ∖ 𝐵 ) |
4 | 0dif | ⊢ ( ∅ ∖ 𝐵 ) = ∅ | |
5 | 1 3 4 | 3eqtri | ⊢ ( ( 𝐴 ∖ 𝐵 ) ∩ ( 𝐵 ∖ 𝐴 ) ) = ∅ |