Metamath Proof Explorer


Theorem disjdifb

Description: Relative complement is anticommutative regarding intersection. (Contributed by Zhi Wang, 5-Sep-2024)

Ref Expression
Assertion disjdifb ( ( 𝐴𝐵 ) ∩ ( 𝐵𝐴 ) ) = ∅

Proof

Step Hyp Ref Expression
1 indif1 ( ( 𝐴𝐵 ) ∩ ( 𝐵𝐴 ) ) = ( ( 𝐴 ∩ ( 𝐵𝐴 ) ) ∖ 𝐵 )
2 disjdif ( 𝐴 ∩ ( 𝐵𝐴 ) ) = ∅
3 2 difeq1i ( ( 𝐴 ∩ ( 𝐵𝐴 ) ) ∖ 𝐵 ) = ( ∅ ∖ 𝐵 )
4 0dif ( ∅ ∖ 𝐵 ) = ∅
5 1 3 4 3eqtri ( ( 𝐴𝐵 ) ∩ ( 𝐵𝐴 ) ) = ∅