Metamath Proof Explorer


Theorem predisj

Description: Preimages of disjoint sets are disjoint. (Contributed by Zhi Wang, 9-Sep-2024)

Ref Expression
Hypotheses predisj.1 ( 𝜑 → Fun 𝐹 )
predisj.2 ( 𝜑 → ( 𝐴𝐵 ) = ∅ )
predisj.3 ( 𝜑𝑆 ⊆ ( 𝐹𝐴 ) )
predisj.4 ( 𝜑𝑇 ⊆ ( 𝐹𝐵 ) )
Assertion predisj ( 𝜑 → ( 𝑆𝑇 ) = ∅ )

Proof

Step Hyp Ref Expression
1 predisj.1 ( 𝜑 → Fun 𝐹 )
2 predisj.2 ( 𝜑 → ( 𝐴𝐵 ) = ∅ )
3 predisj.3 ( 𝜑𝑆 ⊆ ( 𝐹𝐴 ) )
4 predisj.4 ( 𝜑𝑇 ⊆ ( 𝐹𝐵 ) )
5 inpreima ( Fun 𝐹 → ( 𝐹 “ ( 𝐴𝐵 ) ) = ( ( 𝐹𝐴 ) ∩ ( 𝐹𝐵 ) ) )
6 1 5 syl ( 𝜑 → ( 𝐹 “ ( 𝐴𝐵 ) ) = ( ( 𝐹𝐴 ) ∩ ( 𝐹𝐵 ) ) )
7 2 imaeq2d ( 𝜑 → ( 𝐹 “ ( 𝐴𝐵 ) ) = ( 𝐹 “ ∅ ) )
8 ima0 ( 𝐹 “ ∅ ) = ∅
9 7 8 eqtrdi ( 𝜑 → ( 𝐹 “ ( 𝐴𝐵 ) ) = ∅ )
10 6 9 eqtr3d ( 𝜑 → ( ( 𝐹𝐴 ) ∩ ( 𝐹𝐵 ) ) = ∅ )
11 3 10 ssdisjd ( 𝜑 → ( 𝑆 ∩ ( 𝐹𝐵 ) ) = ∅ )
12 4 11 ssdisjdr ( 𝜑 → ( 𝑆𝑇 ) = ∅ )