| Step |
Hyp |
Ref |
Expression |
| 1 |
|
predisj.1 |
⊢ ( 𝜑 → Fun 𝐹 ) |
| 2 |
|
predisj.2 |
⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) = ∅ ) |
| 3 |
|
predisj.3 |
⊢ ( 𝜑 → 𝑆 ⊆ ( ◡ 𝐹 “ 𝐴 ) ) |
| 4 |
|
predisj.4 |
⊢ ( 𝜑 → 𝑇 ⊆ ( ◡ 𝐹 “ 𝐵 ) ) |
| 5 |
|
inpreima |
⊢ ( Fun 𝐹 → ( ◡ 𝐹 “ ( 𝐴 ∩ 𝐵 ) ) = ( ( ◡ 𝐹 “ 𝐴 ) ∩ ( ◡ 𝐹 “ 𝐵 ) ) ) |
| 6 |
1 5
|
syl |
⊢ ( 𝜑 → ( ◡ 𝐹 “ ( 𝐴 ∩ 𝐵 ) ) = ( ( ◡ 𝐹 “ 𝐴 ) ∩ ( ◡ 𝐹 “ 𝐵 ) ) ) |
| 7 |
2
|
imaeq2d |
⊢ ( 𝜑 → ( ◡ 𝐹 “ ( 𝐴 ∩ 𝐵 ) ) = ( ◡ 𝐹 “ ∅ ) ) |
| 8 |
|
ima0 |
⊢ ( ◡ 𝐹 “ ∅ ) = ∅ |
| 9 |
7 8
|
eqtrdi |
⊢ ( 𝜑 → ( ◡ 𝐹 “ ( 𝐴 ∩ 𝐵 ) ) = ∅ ) |
| 10 |
6 9
|
eqtr3d |
⊢ ( 𝜑 → ( ( ◡ 𝐹 “ 𝐴 ) ∩ ( ◡ 𝐹 “ 𝐵 ) ) = ∅ ) |
| 11 |
3 10
|
ssdisjd |
⊢ ( 𝜑 → ( 𝑆 ∩ ( ◡ 𝐹 “ 𝐵 ) ) = ∅ ) |
| 12 |
4 11
|
ssdisjdr |
⊢ ( 𝜑 → ( 𝑆 ∩ 𝑇 ) = ∅ ) |