Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Zhi Wang
ZF Set Theory - start with the Axiom of Extensionality
The empty set
predisj
Next ⟩
Unordered and ordered pairs
Metamath Proof Explorer
Ascii
Unicode
Theorem
predisj
Description:
Preimages of disjoint sets are disjoint.
(Contributed by
Zhi Wang
, 9-Sep-2024)
Ref
Expression
Hypotheses
predisj.1
⊢
φ
→
Fun
⁡
F
predisj.2
⊢
φ
→
A
∩
B
=
∅
predisj.3
⊢
φ
→
S
⊆
F
-1
A
predisj.4
⊢
φ
→
T
⊆
F
-1
B
Assertion
predisj
⊢
φ
→
S
∩
T
=
∅
Proof
Step
Hyp
Ref
Expression
1
predisj.1
⊢
φ
→
Fun
⁡
F
2
predisj.2
⊢
φ
→
A
∩
B
=
∅
3
predisj.3
⊢
φ
→
S
⊆
F
-1
A
4
predisj.4
⊢
φ
→
T
⊆
F
-1
B
5
inpreima
⊢
Fun
⁡
F
→
F
-1
A
∩
B
=
F
-1
A
∩
F
-1
B
6
1
5
syl
⊢
φ
→
F
-1
A
∩
B
=
F
-1
A
∩
F
-1
B
7
2
imaeq2d
⊢
φ
→
F
-1
A
∩
B
=
F
-1
∅
8
ima0
⊢
F
-1
∅
=
∅
9
7
8
eqtrdi
⊢
φ
→
F
-1
A
∩
B
=
∅
10
6
9
eqtr3d
⊢
φ
→
F
-1
A
∩
F
-1
B
=
∅
11
3
10
ssdisjd
⊢
φ
→
S
∩
F
-1
B
=
∅
12
4
11
ssdisjdr
⊢
φ
→
S
∩
T
=
∅