Metamath Proof Explorer


Theorem ssdisjdr

Description: Subset preserves disjointness. Deduction form of ssdisj . Alternatively this could be proved with ineqcom in tandem with ssdisjd . (Contributed by Zhi Wang, 7-Sep-2024)

Ref Expression
Hypotheses ssdisjd.1 φAB
ssdisjdr.2 φCB=
Assertion ssdisjdr φCA=

Proof

Step Hyp Ref Expression
1 ssdisjd.1 φAB
2 ssdisjdr.2 φCB=
3 sslin ABCACB
4 1 3 syl φCACB
5 sseq0 CACBCB=CA=
6 4 2 5 syl2anc φCA=