Description: Subset preserves disjointness. Deduction form of ssdisj . Alternatively this could be proved with ineqcom in tandem with ssdisjd . (Contributed by Zhi Wang, 7-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ssdisjd.1 | |- ( ph -> A C_ B ) |
|
ssdisjdr.2 | |- ( ph -> ( C i^i B ) = (/) ) |
||
Assertion | ssdisjdr | |- ( ph -> ( C i^i A ) = (/) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssdisjd.1 | |- ( ph -> A C_ B ) |
|
2 | ssdisjdr.2 | |- ( ph -> ( C i^i B ) = (/) ) |
|
3 | sslin | |- ( A C_ B -> ( C i^i A ) C_ ( C i^i B ) ) |
|
4 | 1 3 | syl | |- ( ph -> ( C i^i A ) C_ ( C i^i B ) ) |
5 | sseq0 | |- ( ( ( C i^i A ) C_ ( C i^i B ) /\ ( C i^i B ) = (/) ) -> ( C i^i A ) = (/) ) |
|
6 | 4 2 5 | syl2anc | |- ( ph -> ( C i^i A ) = (/) ) |