Metamath Proof Explorer


Theorem ssdisjdr

Description: Subset preserves disjointness. Deduction form of ssdisj . Alternatively this could be proved with ineqcom in tandem with ssdisjd . (Contributed by Zhi Wang, 7-Sep-2024)

Ref Expression
Hypotheses ssdisjd.1
|- ( ph -> A C_ B )
ssdisjdr.2
|- ( ph -> ( C i^i B ) = (/) )
Assertion ssdisjdr
|- ( ph -> ( C i^i A ) = (/) )

Proof

Step Hyp Ref Expression
1 ssdisjd.1
 |-  ( ph -> A C_ B )
2 ssdisjdr.2
 |-  ( ph -> ( C i^i B ) = (/) )
3 sslin
 |-  ( A C_ B -> ( C i^i A ) C_ ( C i^i B ) )
4 1 3 syl
 |-  ( ph -> ( C i^i A ) C_ ( C i^i B ) )
5 sseq0
 |-  ( ( ( C i^i A ) C_ ( C i^i B ) /\ ( C i^i B ) = (/) ) -> ( C i^i A ) = (/) )
6 4 2 5 syl2anc
 |-  ( ph -> ( C i^i A ) = (/) )