Description: Subset preserves disjointness. Deduction form of ssdisj . (Contributed by Zhi Wang, 7-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ssdisjd.1 | |- ( ph -> A C_ B ) |
|
ssdisjd.2 | |- ( ph -> ( B i^i C ) = (/) ) |
||
Assertion | ssdisjd | |- ( ph -> ( A i^i C ) = (/) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssdisjd.1 | |- ( ph -> A C_ B ) |
|
2 | ssdisjd.2 | |- ( ph -> ( B i^i C ) = (/) ) |
|
3 | 1 | ssrind | |- ( ph -> ( A i^i C ) C_ ( B i^i C ) ) |
4 | sseq0 | |- ( ( ( A i^i C ) C_ ( B i^i C ) /\ ( B i^i C ) = (/) ) -> ( A i^i C ) = (/) ) |
|
5 | 3 2 4 | syl2anc | |- ( ph -> ( A i^i C ) = (/) ) |