Metamath Proof Explorer


Theorem ssdisjd

Description: Subset preserves disjointness. Deduction form of ssdisj . (Contributed by Zhi Wang, 7-Sep-2024)

Ref Expression
Hypotheses ssdisjd.1
|- ( ph -> A C_ B )
ssdisjd.2
|- ( ph -> ( B i^i C ) = (/) )
Assertion ssdisjd
|- ( ph -> ( A i^i C ) = (/) )

Proof

Step Hyp Ref Expression
1 ssdisjd.1
 |-  ( ph -> A C_ B )
2 ssdisjd.2
 |-  ( ph -> ( B i^i C ) = (/) )
3 1 ssrind
 |-  ( ph -> ( A i^i C ) C_ ( B i^i C ) )
4 sseq0
 |-  ( ( ( A i^i C ) C_ ( B i^i C ) /\ ( B i^i C ) = (/) ) -> ( A i^i C ) = (/) )
5 3 2 4 syl2anc
 |-  ( ph -> ( A i^i C ) = (/) )