Metamath Proof Explorer
Description: Subset preserves disjointness. Deduction form of ssdisj .
(Contributed by Zhi Wang, 7-Sep-2024)
|
|
Ref |
Expression |
|
Hypotheses |
ssdisjd.1 |
|
|
|
ssdisjd.2 |
|
|
Assertion |
ssdisjd |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssdisjd.1 |
|
| 2 |
|
ssdisjd.2 |
|
| 3 |
1
|
ssrind |
|
| 4 |
|
sseq0 |
|
| 5 |
3 2 4
|
syl2anc |
|