Metamath Proof Explorer


Theorem ssdisjd

Description: Subset preserves disjointness. Deduction form of ssdisj . (Contributed by Zhi Wang, 7-Sep-2024)

Ref Expression
Hypotheses ssdisjd.1 φAB
ssdisjd.2 φBC=
Assertion ssdisjd φAC=

Proof

Step Hyp Ref Expression
1 ssdisjd.1 φAB
2 ssdisjd.2 φBC=
3 1 ssrind φACBC
4 sseq0 ACBCBC=AC=
5 3 2 4 syl2anc φAC=