Metamath Proof Explorer


Theorem ssdisjd

Description: Subset preserves disjointness. Deduction form of ssdisj . (Contributed by Zhi Wang, 7-Sep-2024)

Ref Expression
Hypotheses ssdisjd.1 φ A B
ssdisjd.2 φ B C =
Assertion ssdisjd φ A C =

Proof

Step Hyp Ref Expression
1 ssdisjd.1 φ A B
2 ssdisjd.2 φ B C =
3 1 ssrind φ A C B C
4 sseq0 A C B C B C = A C =
5 3 2 4 syl2anc φ A C =