Metamath Proof Explorer


Theorem ssdisj

Description: Intersection with a subclass of a disjoint class. (Contributed by FL, 24-Jan-2007) (Proof shortened by JJ, 14-Jul-2021)

Ref Expression
Assertion ssdisj ABBC=AC=

Proof

Step Hyp Ref Expression
1 ssrin ABACBC
2 eqimss BC=BC
3 1 2 sylan9ss ABBC=AC
4 ss0 ACAC=
5 3 4 syl ABBC=AC=