Metamath Proof Explorer
Description: Subset preserves disjointness. Deduction form of ssdisj .
(Contributed by Zhi Wang, 7-Sep-2024)
|
|
Ref |
Expression |
|
Hypotheses |
ssdisjd.1 |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |
|
|
ssdisjd.2 |
⊢ ( 𝜑 → ( 𝐵 ∩ 𝐶 ) = ∅ ) |
|
Assertion |
ssdisjd |
⊢ ( 𝜑 → ( 𝐴 ∩ 𝐶 ) = ∅ ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssdisjd.1 |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |
| 2 |
|
ssdisjd.2 |
⊢ ( 𝜑 → ( 𝐵 ∩ 𝐶 ) = ∅ ) |
| 3 |
1
|
ssrind |
⊢ ( 𝜑 → ( 𝐴 ∩ 𝐶 ) ⊆ ( 𝐵 ∩ 𝐶 ) ) |
| 4 |
|
sseq0 |
⊢ ( ( ( 𝐴 ∩ 𝐶 ) ⊆ ( 𝐵 ∩ 𝐶 ) ∧ ( 𝐵 ∩ 𝐶 ) = ∅ ) → ( 𝐴 ∩ 𝐶 ) = ∅ ) |
| 5 |
3 2 4
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ∩ 𝐶 ) = ∅ ) |