Metamath Proof Explorer


Theorem ssdisjd

Description: Subset preserves disjointness. Deduction form of ssdisj . (Contributed by Zhi Wang, 7-Sep-2024)

Ref Expression
Hypotheses ssdisjd.1 ( 𝜑𝐴𝐵 )
ssdisjd.2 ( 𝜑 → ( 𝐵𝐶 ) = ∅ )
Assertion ssdisjd ( 𝜑 → ( 𝐴𝐶 ) = ∅ )

Proof

Step Hyp Ref Expression
1 ssdisjd.1 ( 𝜑𝐴𝐵 )
2 ssdisjd.2 ( 𝜑 → ( 𝐵𝐶 ) = ∅ )
3 1 ssrind ( 𝜑 → ( 𝐴𝐶 ) ⊆ ( 𝐵𝐶 ) )
4 sseq0 ( ( ( 𝐴𝐶 ) ⊆ ( 𝐵𝐶 ) ∧ ( 𝐵𝐶 ) = ∅ ) → ( 𝐴𝐶 ) = ∅ )
5 3 2 4 syl2anc ( 𝜑 → ( 𝐴𝐶 ) = ∅ )